Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Rev Lett ; 132(12): 126902, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579218

RESUMEN

Nonradiative exciton relaxation processes are critical for energy transduction and transport in optoelectronic materials, but how these processes are connected to the underlying crystal structure and the associated electron, exciton, and phonon band structures, as well as the interactions of all these particles, is challenging to understand. Here, we present a first-principles study of exciton-phonon relaxation pathways in pentacene, a paradigmatic molecular crystal and optoelectronic semiconductor. We compute the momentum- and band-resolved exciton-phonon interactions, and use them to analyze key scattering channels. We find that both exciton intraband scattering and interband scattering to parity-forbidden dark states occur on the same ∼100 fs timescale as a direct consequence of the longitudinal-transverse splitting of the bright exciton band. Consequently, exciton-phonon scattering exists as a dominant nonradiative relaxation channel in pentacene. We further show how the propagation of an exciton wave packet is connected with crystal anisotropy, which gives rise to the longitudinal-transverse exciton splitting and concomitant anisotropic exciton and phonon dispersions. Our results provide a framework for understanding the role of exciton-phonon interactions in exciton nonradiative lifetimes in molecular crystals and beyond.

2.
Nano Lett ; 23(13): 5995-6001, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37348129

RESUMEN

Associating atomic vacancies to excited-state transport phenomena in two-dimensional semiconductors demands a detailed understanding of the exciton transitions involved. We study the effect of such defects on the electronic and optical properties of WS2-graphene and MoS2-graphene van der Waals heterobilayers, employing many-body perturbation theory. We find that chalcogen defects and the graphene interface radically alter the optical properties of the transition-metal dichalcogenide in the heterobilayer, due to a combination of dielectric screening and the many-body nature of defect-induced intralayer and interlayer optical transitions. By analyzing the intrinsic radiative rates of the subgap excitonic features, we show that while defects introduce low-lying optical transitions, resulting in excitons with non-negligible oscillator strength, they decrease the optical response of the pristine-like transition-metal dichalcogenide intralayer excitons. Our findings relate excitonic features with interface design for defect engineering in photovoltaic and transport applications.

3.
Nano Lett ; 23(24): 11655-11661, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38054904

RESUMEN

We report on the optical absorption characteristics of selectively positioned sulfur vacancies in monolayer MoS2, as observed by photovoltage and photocurrent experiments in an atomistic vertical tunneling circuit at cryogenic and room temperature. Charge carriers are resonantly photoexcited within the defect states before they tunnel through an hBN tunneling barrier to a graphene-based drain contact. Both photovoltage and photocurrent characteristics confirm the optical absorption spectrum as derived from ab initio GW and Bethe-Salpeter equation approximations. Our results reveal the potential of single-vacancy tunneling devices as atomic-scale photodiodes.

4.
Nano Lett ; 21(18): 7644-7650, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34463514

RESUMEN

Exciton dynamics, lifetimes, and scattering are directly related to the exciton dispersion or band structure. Here, we present a general theory for exciton band structure within both ab initio and model Hamiltonian approaches. We show that contrary to common assumption, the exciton band structure contains nonanalytical discontinuities-a feature which is impossible to obtain from the electronic band structure alone. These discontinuities are purely quantum phenomena, arising from the exchange scattering of electron-hole pairs. We show that the degree of these discontinuities depends on materials' symmetry and dimensionality, with jump discontinuities occurring in 3D and different orders of removable discontinuities in 2D and 1D, whose details depend on the exciton degeneracy and material thickness. We connect these features to the early stages of exciton dynamics, radiative lifetimes, and diffusion constants, in good correspondence with recent experimental observations, revealing that the discontinuities in the band structure lead to ultrafast ballistic transport and suggesting that measured exciton diffusion and dynamics are influenced by the underlying exciton dispersion.


Asunto(s)
Electrones , Difusión
5.
Phys Rev Lett ; 125(25): 255301, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416340

RESUMEN

We determine the phase diagram of excitons in a symmetric transition-metal dichalcogenide 3-layer heterostructure. First principles calculations reveal interlayer exciton states of a symmetric quadrupole, from which higher energy asymmetric dipole states are composed. We find quantum phase transitions between a repulsive quadrupolar and an attractive staggered dipolar lattice phases, driven by a competition between interactions and single exciton energies. The different internal quantum state of excitons in each phase is a striking example of a system where single-particle and interacting many-body states are coupled.

6.
Phys Rev Lett ; 123(7): 076801, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31491121

RESUMEN

Structural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping. We report on the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS_{2} by a combination of CO-tip noncontact atomic force microscopy and scanning tunneling microscopy. Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum. Two energetically narrow unoccupied defect states followed by vibronic sidebands provide a unique fingerprint of this defect. Direct imaging of the defect orbitals, together with ab initio GW calculations, reveal that the large splitting of 252±4 meV between these defect states is induced by spin-orbit coupling.

7.
Proc Natl Acad Sci U S A ; 113(39): 10785-90, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621456

RESUMEN

Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.


Asunto(s)
Alanina/química , Electrones , Péptidos/química , Triptófano/química , Electricidad , Modelos Teóricos , Temperatura
8.
J Am Chem Soc ; 140(6): 2326-2335, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29392936

RESUMEN

Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.

9.
Phys Rev Lett ; 121(16): 167402, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387666

RESUMEN

We study the effect of point-defect chalcogen vacancies on the optical properties of monolayer transition metal dichalcogenides using ab initio GW and Bethe-Salpeter equation calculations. We find that chalcogen vacancies introduce unoccupied in-gap states and occupied resonant defect states within the quasiparticle continuum of the valence band. These defect states give rise to a number of strongly bound defect excitons and hybridize with excitons of the pristine system, reducing the valley-selective circular dichroism. Our results suggest a pathway to tune spin-valley polarization and other optical properties through defect engineering.

10.
Phys Chem Chem Phys ; 20(10): 6860-6867, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29468242

RESUMEN

Peptide-based molecular electronic devices are promising due to the large diversity and unique electronic properties of biomolecules. These electronic properties can change considerably with peptide structure, allowing diverse design possibilities. In this work, we explore the effect of the side-chain of the peptide on its electronic properties, by using both experimental and computational tools to detect the electronic energy levels of two model peptides. The peptides include 2Ala and 2Trp as well as their 3-mercaptopropionic acid linker which is used to form monolayers on an Au surface. Specifically, we compare experimental ultraviolet photoemission spectroscopy measurements with density functional theory based computational results. By analyzing differences in frontier energy levels and molecular orbitals between peptides in gas-phase and in a monolayer on gold, we find that the electronic properties of the peptide side-chain are maintained during binding of the peptide to the gold substrate. This indicates that the energy barrier for the peptide electron transport can be tuned by the amino acid compositions, which suggests a route for structural design of peptide-based electronic devices.


Asunto(s)
Dipéptidos/química , Simulación de Dinámica Molecular , Ácido 3-Mercaptopropiónico/química , Adsorción , Aminoácidos/química , Transporte de Electrón , Electrones , Gases , Oro/química , Conformación Molecular , Propiedades de Superficie , Rayos Ultravioleta
11.
Phys Rev Lett ; 119(26): 267401, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29328724

RESUMEN

We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a GW plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

12.
J Am Chem Soc ; 137(30): 9617-26, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26149234

RESUMEN

Many novel applications in bioelectronics rely on the interaction between biomolecules and electronically conducting substrates. However, crucial knowledge about the relation between electronic transport via peptides and their amino-acid composition is still absent. Here, we report results of electronic transport measurements via several homopeptides as a function of their structural properties and temperature. We demonstrate that the conduction through the peptide depends on its length and secondary structure as well as on the nature of the constituent amino acid and charge of its residue. We support our experimental observations with high-level electronic structure calculations and suggest off-resonance tunneling as the dominant conduction mechanism via extended peptides. Our findings indicate that both peptide composition and structure can affect the efficiency of electronic transport across peptides.


Asunto(s)
Péptidos/química , Aminoácidos/química , Transporte de Electrón , Simulación de Dinámica Molecular , Estructura Molecular , Teoría Cuántica
13.
Phys Rev Lett ; 109(22): 226405, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23368141

RESUMEN

We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems.

14.
J Phys Chem Lett ; 13(3): 747-753, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35029407

RESUMEN

Organic molecular crystals are appealing for next-generation optoelectronic applications due to their multiexciton generation processes that can increase the efficiency of photovoltaic devices. However, a general understanding of how crystal structures affect these processes is lacking, requiring computationally demanding calculations for each material. Here we present an approach to understand and classify organic crystals and elucidate multiexciton processes. We show that organic crystals that are composed of two sublattices are well-approximated by effective fictitious systems of higher translational symmetry. Within this framework, we derive hidden selection rules in crystal pentacene and predict that the bulk polymorph supports fast Coulomb-mediated singlet fission with a transition rate about 2 orders of magnitude faster than that of the thin-film polymorph, a result confirmed with many-body perturbation theory calculations. Our approach is based on density-functional theory calculations and provides design principles for the experimental and computational discovery of new materials with tailored excitonic properties.

15.
Mater Horiz ; 9(3): 1089-1098, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35083477

RESUMEN

2D-semiconductors with strong light-matter interaction are attractive materials for integrated and tunable optical devices. Here, we demonstrate room-temperature wavelength multiplexing of the two-primary bright excitonic channels (Ab-, Bb-) in monolayer transition metal dichalcogenides (TMDs) arising from a dark exciton mediated transition. We present how tuning dark excitons via an out-of-plane electric field cedes the system equilibrium from one excitonic channel to the other, encoding the field polarization into wavelength information. In addition, we demonstrate how such exciton multiplexing is dictated by thermal-scattering by performing temperature dependent photoluminescence measurements. Finally, we demonstrate experimentally and theoretically how excitonic mixing can explain preferable decay through dark states in MoX2 in comparison with WX2 monolayers. Such field polarization-based manipulation of excitonic transitions can pave the way for novel photonic device architectures.

16.
Science ; 376(6591): 406-410, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35446643

RESUMEN

Interlayer excitons, electron-hole pairs bound across two monolayer van der Waals semiconductors, offer promising electrical tunability and localizability. Because such excitons display weak electron-hole overlap, most studies have examined only the lowest-energy excitons through photoluminescence. We directly measured the dielectric response of interlayer excitons, which we accessed using their static electric dipole moment. We thereby determined an intrinsic radiative lifetime of 0.40 nanoseconds for the lowest direct-gap interlayer exciton in a tungsten diselenide/molybdenum diselenide heterostructure. We found that differences in electric field and twist angle induced trends in exciton transition strengths and energies, which could be related to wave function overlap, moiré confinement, and atomic reconstruction. Through comparison with photoluminescence spectra, this study identifies a momentum-indirect emission mechanism. Characterization of the absorption is key for applications relying on light-matter interactions.

17.
Adv Mater ; 34(13): e2106629, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35064943

RESUMEN

A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects-in electron transmission, electron transport, and chemical reactions-is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.

18.
Front Chem ; 9: 743391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616715

RESUMEN

Excited-state processes at organic-inorganic interfaces consisting of molecular crystals are essential in energy conversion applications. While advances in experimental methods allow direct observation and detection of exciton transfer across such junctions, a detailed understanding of the underlying excitonic properties due to crystal packing and interface structure is still largely lacking. In this work, we use many-body perturbation theory to study structure-property relations of excitons in molecular crystals upon adsorption on a gold surface. We explore the case of the experimentally-studied octyl perylene diimide (C8-PDI) as a prototypical system, and use the GW and Bethe-Salpeter equation (BSE) approach to quantify the change in quasiparticle and exciton properties due to intermolecular and substrate screening. Our findings provide a close inspection of both local and environmental structural effects dominating the excitation energies and the exciton binding and nature, as well as their modulation upon the metal-organic interface composition.

19.
ACS Nano ; 15(5): 8780-8789, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33983711

RESUMEN

Structural defects vary the optoelectronic properties of monolayer transition metal dichalcogenides, leading to concerted efforts to control defect type and density via materials growth or postgrowth passivation. Here, we explore a simple chemical treatment that allows on-off switching of low-lying, defect-localized exciton states, leading to tunable emission properties. Using steady-state and ultrafast optical spectroscopy, supported by ab initio calculations, we show that passivation of sulfur vacancy defects, which act as exciton traps in monolayer MoS2 and WS2, allows for controllable and improved mobilities and an increase in photoluminescence up to 275-fold, more than twice the value achieved by other chemical treatments. Our findings suggest a route for simple and rational defect engineering strategies for tunable and switchable electronic and excitonic properties through passivation.

20.
Nat Commun ; 12(1): 3822, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158488

RESUMEN

For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS2. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure. The defect generation rate, atomic imaging and the optical signatures support this claim. We discriminate the narrow linewidth photoluminescence signatures of vacancies, resulting predominantly from localized defect orbitals, from broad luminescence features in the same spectral range, resulting from adsorbates. Vacancies can be patterned with a precision below 10 nm by ion beams, show single photon emission, and open the possibility for advanced defect engineering of 2D semiconductors at the ultimate scale.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda