RESUMEN
New Delhi metallo-ß-lactamase (NDM) grants resistance to a broad spectrum of ß-lactam antibiotics, including last-resort carbapenems, and is emerging as a global antibiotic resistance threat. Limited zinc availability adversely impacts the ability of NDM-1 to provide resistance, but a number of clinical variants have emerged that are more resistant to zinc scarcity (e.g., NDM-15). To provide a novel tool to better study metal ion sequestration in host-pathogen interactions, we describe the development of a fluorescent probe that reports on the dynamic metalation state of NDM within Escherichia coli. The thiol-containing probe selectively coordinates the dizinc metal cluster of NDM and results in a 17-fold increase in fluorescence intensity. Reversible binding enables competition and time-dependent studies that reveal fluorescence changes used to detect enzyme localization, substrate and inhibitor engagement, and changes to metalation state through the imaging of live E. coli using confocal microscopy. NDM-1 is shown to be susceptible to demetalation by intracellular and extracellular metal chelators in a live-cell model of zinc dyshomeostasis, whereas the NDM-15 metalation state is shown to be more resistant to zinc flux. The development of this reversible turn-on fluorescent probe for the metalation state of NDM provides a new tool for monitoring the impact of metal ion sequestration by host defense mechanisms and for detecting inhibitor-target engagement during the development of therapeutics to counter this resistance determinant.
Asunto(s)
Quelantes/farmacología , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/farmacología , Compuestos de Sulfhidrilo/farmacología , Zinc/farmacología , beta-Lactamasas/metabolismo , Quelantes/química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Colorantes Fluorescentes/química , Estructura Molecular , Compuestos de Sulfhidrilo/química , Zinc/químicaRESUMEN
An atomistic understanding of metal transport in the human body is critical to anticipate the side effects of metal-based therapeutics and holds promise for new drugs and drug delivery designs. Human serum transferrin (hTF) is a central part of the transport processes because of its ubiquitous ferrying of physiological Fe(III) and other transition metals to tightly controlled parts of the body. There is an atomistic mechanism for the uptake process with Fe(III), but not for the release process, or for other metals. This study provides initial insight into these processes for a range of transition metals-Ti(IV), Co(III), Fe(III), Ga(III), Cr(III), Fe(II), Zn(II)-through fully atomistic, extensive quantum mechanical/discrete molecular dynamics sampling and provides, to our knowledge, a new technique we developed to calculate relative binding affinities between metal cations and the protein. It identifies protonation of Tyr188 as a trigger for metal release rather than protonation of Lys206 or Lys296. The study identifies the difficulty of metal release from hTF as potentially related to cytotoxicity. Simulations identify a few critical interactions that stabilize the metal binding site in a flexible, nuanced manner.
Asunto(s)
Compuestos Férricos , Transferrina , Transporte Biológico , Compuestos Férricos/metabolismo , Humanos , Metales , Simulación de Dinámica Molecular , Transferrina/metabolismoRESUMEN
Ionic lithium shows rare effectiveness for treating bipolar disorder and is a potential drug for neurodegenerative diseases. Unfortunately, lithium suffers from significant drawbacks, mainly a narrow therapeutic window. Among the targets of lithium, glycogen synthase kinase 3ß (GSK-3ß) may be responsible for its therapeutic effects. The development of alternative, selective inhibitors of this kinase could prevent lithium side effects, but such efforts have met little success so far. An atomistic understanding of Li+ inhibition and the GSK-3ß phosphorylation reaction would therefore facilitate the development of new drugs. In this study, we use extensive sampling of catalytic states with our mixed quantum-classical dynamics method QM/DMD and binding affinities from a competitive metal affinity (CMA) approach to expand the atomistic picture of Li+ GSK-3ß inhibition. We compare Li+ action with Be2+ and find our results in agreement with in vitro kinetics studies. Ultimately, our simulations show that Li+ inhibition is driven by decreasing the phosphorylation reaction rate, rather than reducing catalytic turnover through tight binding to different GSK-3ß states like Be2+ inhibition. The effect of these metals derive from electrostatic differences and especially their smaller atomic radii compared to the native Mg2+ and thus provide insight for the development of GSK-3ß inhibitors based on other paradigms.
Asunto(s)
Litio , Glucógeno Sintasa Quinasa 3 beta , Cinética , FosforilaciónRESUMEN
The pH-dependence of enzyme fold stability and catalytic activity is a fundamentally dynamic, structural property which is difficult to study. The challenges and expense of investigating dynamic, atomic scale behavior experimentally means that computational methods, particularly constant pH molecular dynamics (CpHMD), are well situated tools for this. However, these methods often struggle with affordable sampling of sufficiently long time scales while also obtaining accurate pKa prediction and verifying the structures they generate. We introduce Titr-DMD, an affordable CpHMD method that combines the quasi-all-atom coarse-grained discrete molecular dynamics (DMD) method for conformational sampling with Propka for pKa prediction, to circumvent these issues. The combination enables rapid sampling on limited computational resources, while simulations are still performed on the atomic scale. We benchmark the method on a set of proteins with experimentally attested pKa and on the pH triggered conformational change in a staphylococcal nuclease mutant, a rare experimental study of such behavior. Our results show Titr-DMD to be an effective and inexpensive method to study pH-coupled protein dynamics.
RESUMEN
Phenylalanine hydroxylase (PAH) is an iron enzyme catalyzing the oxidation of l-Phe to l-Tyr during phenylalanine catabolism. Dysfunction of PAH leads to the debilitating condition phenylketonuria (PKU), which prompted research into the structure and function of PAH over the last 50 years. Despite intensive study, there is no consensus on the atomistic details of the mechanism of O2 binding and splitting by wild-type (WT) PAH and how it varies with PKU-inducing mutations, Arg158Gln and Glu280Lys. We studied structures involved in a proposed mechanism for the WT and mutants using extensive mixed quantum-classical molecular dynamics simulations. Simulations reveal a previously unobserved dynamic coupling between the active site and the mutation sites, suggesting how they can affect the catalytic performance of PAH. Furthermore, the effect of the coupling on the PAH structure agrees with and expands our understanding of the experimentally observed differences in activity between the WT and mutants.
Asunto(s)
Oxígeno/metabolismo , Fenilalanina Hidroxilasa/metabolismo , Dominio Catalítico , Teoría Funcional de la Densidad , Humanos , Modelos Químicos , Simulación de Dinámica Molecular , Mutación , Oxígeno/química , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/genética , Unión ProteicaRESUMEN
Azacyclo- and azabicycloalkanone peptidomimetics were synthesized regio- and diastereoselectively by iodoacetoxylation and transannular amidation reactions on unsaturated lactam precursors contingent on ring size, olefin position, solvent, and hypervalent iodine(III) reagent. 4-Iodopyrrolizidinone 1, 7-iodoindolizidinone 2, and 4-iodo-5-acetoxylactams (e.g., 6 and 7) were made stereospecifically from 7-9-membered olefins 16, iodine, and hypervalent iodine(III) in acetonitrile or toluene, respectively. X-ray crystallography demonstrated potential for mimicry of natural peptide turn side chain and backbone conformations.