RESUMEN
Solute carrier (SLC) membrane transport proteins control essential physiological functions, including nutrient uptake, ion transport, and waste removal. SLCs interact with several important drugs, and a quarter of the more than 400 SLC genes are associated with human diseases. Yet, compared to other gene families of similar stature, SLCs are relatively understudied. The time is right for a systematic attack on SLC structure, specificity, and function, taking into account kinship and expression, as well as the dependencies that arise from the common metabolic space.
Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Animales , Investigación Biomédica , Descubrimiento de Drogas , Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genéticaRESUMEN
There are many pathways to success. Mine followed a traditional one to an academic faculty position, but this pathway is not the one most life sciences PhD graduates will follow today. We have all had time during the COVID-19 pandemic to reflect on our personal pathway-where we are and where we are going. In this reflection, I outline five steps on my pathway to success: Train with the best. Discover something. Mentor others. Go beyond. Promote science. I will provide examples from my personal journey that I hope will resonate with the reader as they create their pathway to success.
Asunto(s)
Distinciones y Premios , Disciplinas de las Ciencias Biológicas , COVID-19 , Humanos , Pandemias , Sociedades CientíficasRESUMEN
Anion exchanger 1 (AE1) is responsible for the exchange of bicarbonate and chloride across the erythrocyte plasma membrane. Human AE1 consists of a cytoplasmic and a membrane domain joined by a 33-residue flexible linker. Crystal structures of the individual domains have been determined, but the intact AE1 structure remains elusive. In this study, we use molecular dynamics simulations and modeling to build intact AE1 structures in a complex lipid bilayer that resembles the native erythrocyte plasma membrane. AE1 models were evaluated using available experimental data to provide an atomistic view of the interaction and dynamics of the cytoplasmic domain, the membrane domain, and the connecting linker in a complete model of AE1 in a lipid bilayer. Anionic lipids were found to interact strongly with AE1 at specific amino acid residues that are linked to diseases and blood group antigens. Cholesterol was found in the dimeric interface of AE1, suggesting that it may regulate subunit interactions and anion transport.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Lípidos/química , Simulación de Dinámica Molecular , Aniones , Humanos , Unión Proteica , Dominios Proteicos , Multimerización de ProteínaRESUMEN
The a subunit is the largest of 15 different subunits that make up the vacuolar H+-ATPase (V-ATPase) complex, where it functions in proton translocation. In mammals, this subunit has four paralogous isoforms, a1-a4, which may encode signals for targeting assembled V-ATPases to specific intracellular locations. Despite the functional importance of the a subunit, its structure remains controversial. By studying molecular mechanisms of human disease-causing missense mutations within a subunit isoforms, we may identify domains critical for V-ATPase targeting, activity and/or regulation. cDNA-encoded FLAG-tagged human wildtype ATP6V0A2 (a2) and ATP6V0A4 (a4) subunits and their mutants, a2P405L (causing cutis laxa), and a4R449H and a4G820R (causing renal tubular acidosis, dRTA), were transiently expressed in HEK 293 cells. N-Glycosylation was assessed using endoglycosidases, revealing that a2P405L, a4R449H, and a4G820R were fully N-glycosylated. Cycloheximide (CHX) chase assays revealed that a2P405L and a4R449H were unstable relative to wildtype. a4R449H was degraded predominantly in the proteasomal pathway, whereas a2P405L was degraded in both proteasomal and lysosomal pathways. Immunofluorescence studies disclosed retention in the endoplasmic reticulum and defective cell-surface expression of a4R449H and defective Golgi trafficking of a2P405L Co-immunoprecipitation studies revealed an increase in association of a4R449H with the V0 assembly factor VMA21, and a reduced association with the V1 sector subunit, ATP6V1B1 (B1). For a4G820R, where stability, degradation, and trafficking were relatively unaffected, 3D molecular modeling suggested that the mutation causes dRTA by blocking the proton pathway. This study provides critical information that may assist rational drug design to manage dRTA and cutis laxa.
Asunto(s)
Acidosis Tubular Renal/genética , Cutis Laxo/genética , Modelos Moleculares , Mutación Missense , Procesamiento Proteico-Postraduccional , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón Vacuolares/genética , Acidosis Tubular Renal/metabolismo , Acidosis Tubular Renal/patología , Sustitución de Aminoácidos , Membrana Celular/enzimología , Membrana Celular/metabolismo , Membrana Celular/patología , Cutis Laxo/metabolismo , Cutis Laxo/patología , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Estabilidad de Enzimas , Glicosilación , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Células HEK293 , Humanos , Riñón/enzimología , Riñón/metabolismo , Riñón/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteolisis , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismoRESUMEN
The human solute carrier 26 (SLC26) gene family of anion transporters consists of 10 members (SLC26A1-A11, A10 being a pseudogene) that encode membrane glycoproteins with 14 transmembrane segments and a C-terminal cytoplasmic sulfate transporter anti-sigma antagonist domain. Thus far, mutations in eight members of the SLC26 family (A1-A6, A8, and A9) have been linked to diseases in humans. Our goal is to characterize the role of N-glycosylation and the effect of mutations in SLC26A2 and A3 proteins on their functional expression in transfected HEK-293 cells. We found that certain mutants were retained in the endoplamic reticulum via an interaction with the lectin chaperone calnexin. Some could escape protein quality control and traffic to the cell surface upon removal of the N-glycosylation sites. Furthermore, we found that loss of N-glycosylation reduced expression of SLC26A2 at the cell surface. Loss of N-glycosylation had no effect on the stability of SLC26A3, yet resulted in a profound decrease in transport activity. Thus, N-glycosylation plays three roles in the functional expression of SLC26 proteins: (1) to retain misfolded proteins in the endoplamic reticulum, (2) to stabilize the protein at the cell surface, and (3) to maintain the transport protein in a functional state.
Asunto(s)
Antiportadores de Cloruro-Bicarbonato/metabolismo , Transportadores de Sulfato/metabolismo , Antiportadores de Cloruro-Bicarbonato/química , Antiportadores de Cloruro-Bicarbonato/genética , Retículo Endoplásmico/metabolismo , Glicosilación , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Transportadores de Sulfato/química , Transportadores de Sulfato/genéticaRESUMEN
The Band 3 (AE1, SLC4A1) membrane protein is found in red blood cells and in kidney where it functions as an electro-neutral chloride/bicarbonate exchanger. In this study, we have used molecular dynamics simulations to provide the first realistic model of the dimeric membrane domain of human Band 3 in an asymmetric lipid bilayer containing a full complement of phospholipids, including phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, and its partner membrane protein Glycophorin A (GPA). The simulations show that the annular layer in the inner leaflet surrounding Band 3 was enriched in phosphatidylserine and PIP2 molecules. Cholesterol was also enriched around Band 3 but also at the dimer interface. The interaction of these lipids with specific sites on Band 3 may play a role in the folding and function of this anion transport membrane protein. GPA associates with Band 3 to form the Wright (Wr) blood group antigen, an interaction that involves an ionic bond between Glu658 in Band 3 and Arg61 in GPA. We were able to recreate this complex by performing simulations to allow the dimeric transmembrane portion of GPA to interact with Band 3 in a model membrane. Large-scale simulations showed that the GPA dimer can bridge Band 3 dimers resulting in the dynamic formation of long strands of alternating Band 3 and GPA dimers.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Glicoforinas/metabolismo , Fosfolípidos/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/química , Aniones , Arginina/metabolismo , Antígenos de Grupos Sanguíneos/química , Colesterol/metabolismo , Dimerización , Ácido Glutámico/metabolismo , Glicoforinas/química , Humanos , Membrana Dobles de Lípidos , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Pliegue de ProteínaRESUMEN
PURPOSE OF REVIEW: Current research on the human band 3 glycoprotein, the red cell chloride/bicarbonate anion exchanger (AE1), is highlighted and placed within a structural context. RECENT FINDINGS: The determination of the crystal structure of the membrane domain of human band 3, the founding member of the solute carrier 4 (SLC4) family of bicarbonate transporters, is a major breakthrough toward understanding the mechanism of action of this membrane transport protein, its interaction with partner proteins, and how mutations linked to disease affect its ability to fold and function. SUMMARY: Band 3 contains 14 transmembrane segments arranged in a 7+7 transmembrane inverted repeat topology common to all members of the SLC4 family and the unrelated SLC26 anion transporter family. A functional feature of this fold is the presence of a core and a gate domain: the core domain contains two short transmembrane helices (TM3 and 10) that face each other in the middle of the membrane with the positive N-terminal helix dipoles creating the anion-binding site, whereas the gate domain forms the dimer interface. During transport, the movement of these two domains relative to each other provides the intracellular and extracellular compartments with alternating access to the central anion-binding site.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Bicarbonatos/metabolismo , Mutación , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Cristalografía por Rayos X , Humanos , Transporte Iónico/genética , Dominios Proteicos , Estructura Secundaria de ProteínaRESUMEN
The a subunit of the V0 membrane-integrated sector of human V-ATPase has four isoforms, a1-a4, with diverse and crucial functions in health and disease. They are encoded by four conserved paralogous genes, and their vertebrate orthologs have positionally conserved N-glycosylation sequons within the second extracellular loop, EL2, of the a subunit membrane domain. Previously, we have shown directly that the predicted sequon for the a4 isoform is indeed N-glycosylated. Here we extend our investigation to the other isoforms by transiently transfecting HEK 293 cells to express cDNA constructs of epitope-tagged human a1-a3 subunits, with or without mutations that convert Asn to Gln at putative N-glycosylation sites. Expression and N-glycosylation were characterized by immunoblotting and mobility shifts after enzymatic deglycosylation, and intracellular localization was determined using immunofluorescence microscopy. All unglycosylated mutants, where predicted N-glycosylation sites had been eliminated by sequon mutagenesis, showed increased relative mobility on immunoblots, identical to what was seen for wild-type a subunits after enzymatic deglycosylation. Cycloheximide-chase experiments showed that unglycosylated subunits were turned over at a higher rate than N-glycosylated forms by degradation in the proteasomal pathway. Immunofluorescence colocalization analysis showed that unglycosylated a subunits were retained in the ER, and co-immunoprecipitation studies showed that they were unable to associate with the V-ATPase assembly chaperone, VMA21. Taken together with our previous a4 subunit studies, these observations show that N-glycosylation is crucial in all four human V-ATPase a subunit isoforms for protein stability and ultimately for functional incorporation into V-ATPase complexes.
Asunto(s)
ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Asparagina/genética , Sitios de Unión , Retículo Endoplásmico/metabolismo , Glutamina/genética , Glicosilación/efectos de los fármacos , Células HEK293 , Humanos , Mutación , Unión Proteica , Biosíntesis de Proteínas , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismoRESUMEN
The human solute carriers (SLCs) comprise over 400 different transporters, organized into 65 families ( http://slc.bioparadigms.org/ ) based on their sequence homology and transport function. SLCs are responsible for transporting extraordinarily diverse solutes across biological membranes, including inorganic ions, amino acids, lipids, sugars, neurotransmitters and drugs. Most of these membrane proteins function as coupled symporters (co-transporters) utilizing downhill ion (H+ or Na+) gradients as the driving force for the transport of substrate against its concentration gradient into cells. Other members work as antiporters (exchangers) that typically contain a single substrate-binding site with an alternating access mode of transport, while a few members exhibit channel-like properties. Dysfunction of SLCs is correlated with numerous human diseases and therefore they are potential therapeutic drug targets. In this review, we identified all of the SLC crystal structures that have been determined, most of which are from prokaryotic species. We further sorted all the SLC structures into four main groups with different protein folds and further discuss the well-characterized MFS (major facilitator superfamily) and LeuT (leucine transporter) folds. This review provides a systematic analysis of the structure, molecular basis of substrate recognition and mechanism of action in different SLC family members.
RESUMEN
The first transmembrane (TM1) helix in the red cell anion exchanger (AE1, Band 3, or SLC4A1) acts as an internal signal anchor that binds the signal recognition particle and directs the nascent polypeptide chain to the endoplasmic reticulum (ER) membrane where it moves from the translocon laterally into the lipid bilayer. The sequence N-terminal to TM1 forms an amphipathic helix that lies at the membrane interface and is connected to TM1 by a bend at Pro403. Southeast Asian ovalocytosis (SAO) is a red cell abnormality caused by a nine-amino acid deletion (Ala400-Ala408) at the N-terminus of TM1. Here we demonstrate, by extensive (â¼4.5 µs) molecular dynamics simulations of TM1 in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membrane, that the isolated TM1 peptide is highly dynamic and samples the structure of TM1 seen in the crystal structure of the membrane domain of AE1. The SAO deletion not only removes the proline-induced bend but also causes a "pulling in" of the part of the amphipathic helix into the hydrophobic phase of the bilayer, as well as the C-terminal of the peptide. The dynamics of the SAO peptide very infrequently resembles the structure of TM1 in AE1, demonstrating the disruptive effect the SAO deletion has on AE1 folding. These results provide a precise molecular view of the disposition and dynamics of wild-type and SAO TM1 in a lipid bilayer, an important early biosynthetic intermediate in the insertion of AE1 into the ER membrane, and extend earlier results of cell-free translation experiments.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/química , Secuencia de Bases , Eliptocitosis Hereditaria/genética , Fosfatidilcolinas/química , Eliminación de Secuencia , Secuencia de Aminoácidos , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Eliptocitosis Hereditaria/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Simulación de Dinámica Molecular , Prolina/química , Prolina/metabolismo , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de ProteínaRESUMEN
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Asunto(s)
Desequilibrio Ácido-Base/sangre , Acidosis Tubular Renal/sangre , Anemia Hemolítica Congénita/sangre , Proteína 1 de Intercambio de Anión de Eritrocito/química , Eliptocitosis Hereditaria/sangre , Errores Innatos del Metabolismo/sangre , Esferocitosis Hereditaria/sangre , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Desequilibrio Ácido-Base/genética , Desequilibrio Ácido-Base/patología , Acidosis Tubular Renal/genética , Acidosis Tubular Renal/patología , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/patología , Proteína 1 de Intercambio de Anión de Eritrocito/antagonistas & inhibidores , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Bicarbonatos/metabolismo , Eliptocitosis Hereditaria/genética , Eliptocitosis Hereditaria/patología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/patología , Eritrocitos Anormales/patología , Expresión Génica , Glicosilación , Humanos , Ligandos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/patología , Mutación , Unión Proteica , Esferocitosis Hereditaria/genética , Esferocitosis Hereditaria/patologíaRESUMEN
The availability of the first crystal structure of a bacterial member (SLC26Dg) of the solute carrier SLC26 family of anion transporters has allowed us to create 3-dimensional models of all 10 human members (SLC26A1-A11, A10 being a pseudogene) of these membrane proteins using the Phyre2 bioinformatic tool. The homology modeling predicted that the SLC26 human proteins, like the SLC26Dg template, all consist of 14 transmembrane segments (TM) arranged in a 7+7 inverted topology with the amino-termini of two half-helices (TM3 and 10) facing each other in the centre of the protein to create the anion-binding site, linked to a C-terminal cytosolic sulfate transporter anti-sigma factor antagonist (STAS) domain. A plethora of human diseases are associated with mutations in the genes encoding human SLC26 transporters, including chondrodysplasias with varying severity in SLC26A2 (~50 mutations, 27 point mutations), congenital chloride-losing diarrhea in SLC26A3 (~70 mutations, 31 point mutations) and Pendred Syndrome or deafness autosomal recessive type 4 in SLC26A4 (~500 mutations, 203 point mutations). We have localized all of these point mutations in the 3-dimensional structures of the respective SLC26A2, A3 and A4 proteins and systematically analyzed their effect on protein structure. While most disease-causing mutations may cause folding defects resulting in impaired trafficking of these membrane glycoproteins from the endoplasmic reticulum to the cell surface - as demonstrated in a number of functional expression studies - the modeling also revealed that a number of pathogenic mutations are localized to the anion-binding site, which may directly affect transport function.
Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas Bacterianas/química , Antiportadores de Cloruro-Bicarbonato/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Mutación , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo , Biología Computacional , Deinococcus/genética , Deinococcus/metabolismo , Diarrea/congénito , Diarrea/genética , Diarrea/metabolismo , Diarrea/patología , Expresión Génica , Bocio Nodular/genética , Bocio Nodular/metabolismo , Bocio Nodular/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Transporte Iónico , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Homología Estructural de Proteína , Especificidad por Sustrato , Transportadores de SulfatoRESUMEN
The human solute carrier 26 (SLC26) family of anion transporters consists of ten members that are found in various organs in the body including the stomach, intestine, kidney, thyroid and ear where they transport anions including bicarbonate, chloride and sulfate, typically in an exchange mode. Mutations in these genes cause a plethora of diseases such as diastrophic dysplasia affecting sulfate uptake into chondrocytes (SLC26A2), congenital chloride-losing diarrhoea (SLC26A3) affecting chloride secretion in the intestine and Pendred's syndrome (SLC26A4) resulting in hearing loss. To understand how these mutations affect the structures of the SLC26 membrane proteins and their ability to function properly, 12 human disease-causing mutants from SLC26A2, SLC26A3 and SLC26A4 were introduced into the equivalent sites of the sulfate transporter anti-sigma factor antagonist (STAS) domain of a bacterial homologue SLC26 protein DauA (YchM). Biophysical analyses including size-exclusion chromatography, circular dichroism (CD), differential scanning fluorimetry (DSF) and tryptophan fluorescence revealed that most mutations caused protein instability and aggregation. The mutation A463K, equivalent to N558K in human SLC26A4, which is located within α-helix 1 of the DauA STAS domain, stabilized the protein. CD measurements showed that most disease-related mutants had a mildly reduced helix content, but were more sensitive to thermal denaturation. Fluorescence spectroscopy showed that the mutants had more open structures and were more readily denatured by urea, whereas DSF indicated more labile folds. Overall, we conclude that the disease-associated mutations destabilized the STAS domain resulting in an increased propensity to misfold and aggregate.
Asunto(s)
Proteínas de Transporte de Anión/química , Antiportadores de Cloruro-Bicarbonato/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/genética , Antiportadores de Cloruro-Bicarbonato/genética , Cromatografía en Gel , Diarrea/congénito , Diarrea/genética , Enanismo/genética , Bocio Nodular/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Mutación , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transportadores de Sulfato , Tripsina/químicaRESUMEN
The a subunit is the largest of 14 different subunits that make up the V-ATPase complex. In mammalian species this membrane protein has four paralogous isoforms, a1-a4. Clinically, a subunit isoforms are implicated in diverse diseases; however, little is known about their structure and function. The subunit has conserved, predicted N-glycosylation sites, and the a3 isoform has been directly shown to be N-glycosylated. Here we ask if human a4 (ATP6V0A4) is N-glycosylated at the predicted site, Asn489. We transfected HEK 293 cells, using the pCDNA3.1 expression-vector system, to express cDNA constructs of epitope-tagged human a4 subunit, with or without mutations to eliminate the putative glycosylation site. Glycosylation was characterized also by treatment with endoglycosidases; expression and localization were assessed by immunoblotting and immunofluorescence. Endoglycosidase-treated wild type (WT) a4 showed increased relative mobility on immunoblots, compared with untreated WT a4. This relative mobility was identical to that of unglycosylated mutant a4N489D , demonstrating that the a4 subunit is glycosylated. Cycloheximide pulse-chase experiments showed that the unglycosylated subunit degraded at a higher rate than the N-glycosylated form. Unglycosylated a4 was degraded mostly in the proteasomal pathway, but also, in part, through the lysosomal pathway. Immunofluorescence colocalization data showed that unglycosylated a4 was mostly retained in the ER, and that plasma membrane trafficking was defective. Co-immunoprecipitation studies suggested that a4N489D does not assemble with the V-ATPase V1 domain. Taken together, these data show that N-glycosylation plays a crucial role in a4 stability, and in V-ATPase assembly and trafficking to the plasma membrane. J. Cell. Biochem. 117: 2757-2768, 2016. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Membrana Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Western Blotting , Técnica del Anticuerpo Fluorescente , Glicosilación , Células HEK293 , Humanos , Inmunoprecipitación , Estabilidad Proteica , Subunidades de Proteína , Homología de Secuencia de AminoácidoRESUMEN
The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a "proton trap" that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane.
Asunto(s)
Cardiolipinas/química , Cardiolipinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Datos de Secuencia MolecularAsunto(s)
Acidosis Tubular Renal/genética , Anemia/genética , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Enfermedades del Recién Nacido/genética , Mutación Missense , Acidosis Tubular Renal/metabolismo , Acidosis Tubular Renal/patología , Sustitución de Aminoácidos , Anemia/metabolismo , Anemia/patología , Transporte Biológico Activo/genética , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Enfermedades del Recién Nacido/patología , MasculinoRESUMEN
Anion exchanger 1 (AE1) is a 95 kDa glycoprotein that facilitates Cl(-)=HCO(-)(3) exchange across the erythrocyte plasma membrane. This transport activity resides in the 52 kDa C-terminal membrane domain (Gly(361)-Val(911)) predicted to span the membrane 14 times. To explore the role of tryptophan (Trp) residues in AE1 function, the seven endogenous Trp residues in the membrane domain were mutated individually to alanine (Ala) and phenylalanine (Phe). Expression levels, cell surface abundance, inhibitor binding and transport activities of the mutants were measured upon expression in HEK-293 cells. The seven Trp residues divided into three classes according the impact of mutations on the functional expression of AE1: Class 1, dramatically decreased expression (Trp(492) and Trp(496)); Class 2, decreased expression by Ala substitution but not Phe (Trp(648), Trp(662) and Trp(723)); and Class 3, normal expression (Trp(831) and Trp(848)). The results indicate that Trp residues play differential roles in AE1 expression and function depending on their location in the protein and that Trp mutants with low expression are misfolded and retained in the endoplasmic reticulum.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Triptófano/metabolismo , Secuencias de Aminoácidos , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Sitios de Unión , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Transporte de Proteínas , Triptófano/genéticaRESUMEN
The human solute carrier (SLC26) family of anion transporters consists of 10 members (SLCA1-11, SLCA10 being a pseudogene) that encode membrane proteins containing ~12 transmembrane (TM) segments with putative N-glycosylation sites (-NXS/T-) in extracellular loops and a COOH-terminal cytosolic STAS domain. All 10 members of the human SLC26 family, FLAG-tagged at the NH2 terminus, were transiently expressed in HEK-293 cells. While most proteins were observed to contain both high-mannose and complex oligosaccharides, SLC26A2 was mainly in the complex form, SLC26A4 in the high-mannose form, and SLC26A8 was not N-glycosylated. Mutation of the putative N-glycosylation sites showed that most members contain multiple N-glycosylation sites in the second extracytosolic (EC) loop, except SLC26A11, which was N-glycosylated in EC loop 4. Immunofluorescence staining of permeabilized cells localized the proteins to the plasma membrane and the endoplasmic reticulum, with SLC26A2 highly localized to the plasma membrane. N-glycosylation was not a necessary requirement for cell surface expression as the localization of nonglycosylated proteins was similar to their wild-type counterparts, although a lower level of cell-surface biotinylation was observed. No immunostaining of intact cells was observed for any SLC26 members, demonstrating that the NH2-terminal FLAG tag was located in the cytosol. Topological models of the SLC26 proteins that contain an even number of transmembrane segments with both the NH2 and COOH termini located in the cytosol and utilized N-glycosylation sites defining the positions of two EC loops are presented.
Asunto(s)
Proteínas de Transporte de Anión/química , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Membrana Celular/metabolismo , Perros , Retículo Endoplásmico/metabolismo , Expresión Génica , Glicosilación , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transportadores de SulfatoRESUMEN
Anion exchanger 1 (AE1; Band 3; SLC4A1) is the founding member of the solute carrier 4 (SLC4) family of bicarbonate transporters that includes chloride/bicarbonate AEs and Na(+)-bicarbonate co-transporters (NBCs). These membrane proteins consist of an amino-terminal cytosolic domain involved in protein interactions and a carboxyl-terminal membrane domain that carries out the transport function. Mutation of a conserved arginine residue (R298S) in the cytosolic domain of NBCe1 (SLC4A4) is linked to proximal renal tubular acidosis and results in impaired transport function, suggesting that the cytosolic domain plays a role in substrate permeation. Introduction of single and double mutations at the equivalent arginine (Arg(283)) and at an interacting glutamate (Glu(85)) in the cytosolic domain of human AE1 (cdAE1) had no effect on the cell surface expression or the transport activity of AE1 expressed in HEK-293 cells. In addition, the membrane domain of AE1 (mdAE1) efficiently mediated anion transport. A 2.1-Å resolution crystal structure of cdΔ54AE1 (residues 55-356 of cdAE1) lacking the amino-terminal and carboxyl-terminal disordered regions, produced at physiological pH, revealed an extensive hydrogen-bonded network involving Arg(283) and Glu(85). Mutations at these residues affected the pH-dependent conformational changes and stability of cdΔ54AE1. As these structural alterations did not impair functional expression of AE1, the cytosolic and membrane domains operate independently. A substrate access tunnel within the cytosolic domain is not present in AE1 and therefore is not an essential feature of the SLC4 family of bicarbonate transporters.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Simportadores de Sodio-Bicarbonato/química , Simportadores de Sodio-Bicarbonato/metabolismo , Sustitución de Aminoácidos , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Cristalografía por Rayos X , Regulación de la Expresión Génica , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/fisiología , Mutación Missense , Estructura Terciaria de Proteína , Simportadores de Sodio-Bicarbonato/genéticaRESUMEN
In this article I will review my personal career path starting with how a red squirrel got me interested in research, and the vital role that mentors played in my pathway to success - a pathway that taught me many lessons that I would like to share with the reader, particularly graduate students and post-doctoral fellows who are just starting down their own unique pathways.