Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Appl Environ Microbiol ; 82(8): 2444-2456, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26873318

RESUMEN

The Gram-negative bacterium Stenotrophomonas maltophilialives in diverse ecological niches. As a result of its formidable capabilities of forming biofilm and its resistance to multiple antibiotic agents, the bacterium is also a nosocomial pathogen of serious threat to the health of patients whose immune systems are suppressed or compromised. Besides the histidine kinase RpfC, the two-component signal transduction system (TCS), which is the canonical regulatory machinery used by most bacterial pathogens, has never been experimentally investigated inS. maltophilia Here, we annotated 62 putative histidine kinase genes in the S. maltophilia genome and successfully obtained 51 mutants by systematical insertional inactivation. Phenotypic characterization identified a series of mutants with deficiencies in bacterial growth, swimming motility, and biofilm development. A TCS, named here BfmA-BfmK (Smlt4209-Smlt4208), was genetically confirmed to regulate biofilm formation inS. maltophilia Together with interacting partner prediction and chromatin immunoprecipitation screens, six candidate promoter regions bound by BfmA in vivo were identified. We demonstrated that, among them, BfmA acts as a transcription factor that binds directly to the promoter regions of bfmA-bfmK and Smlt0800(acoT), a gene encoding an acyl coenzyme A thioesterase that is associated with biofilm development, and positively controls their transcription. Genome-scale mutational analyses of histidine kinase genes and functional dissection of BfmK-BfmA regulation in biofilm provide genetic information to support more in-depth studies on cellular signaling inS. maltophilia, in the context of developing novel approaches to fight this important bacterial pathogen.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Histidina Quinasa/metabolismo , Stenotrophomonas maltophilia/enzimología , Stenotrophomonas maltophilia/fisiología , Análisis Mutacional de ADN , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética , Locomoción , Mutagénesis Insercional , Regiones Promotoras Genéticas , Unión Proteica , Stenotrophomonas maltophilia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Cell Rep ; 21(10): 2940-2951, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212037

RESUMEN

Recognition of the host plant is a prerequisite for infection by pathogenic bacteria. However, how bacterial cells sense plant-derived stimuli, especially chemicals that function in regulating plant development, remains completely unknown. Here, we have identified a membrane-bound histidine kinase of the phytopathogenic bacterium Xanthomonas campestris, PcrK, as a bacterial receptor that specifically detects the plant cytokinin 2-isopentenyladenine (2iP). 2iP binds to the extracytoplasmic region of PcrK to decrease its autokinase activity. Through a four-step phosphorelay, 2iP stimulation decreased the phosphorylation level of PcrR, the cognate response regulator of PcrK, to activate the phosphodiesterase activity of PcrR in degrading the second messenger 3',5'-cyclic diguanylic acid. 2iP perception by the PcrK-PcrR remarkably improves bacterial tolerance to oxidative stress by regulating the transcription of 56 genes, including the virulence-associated TonB-dependent receptor gene ctrA. Our results reveal an evolutionarily conserved, inter-kingdom signaling by which phytopathogenic bacteria intercept a plant hormone signal to promote adaptation to oxidative stress.


Asunto(s)
Citocininas/metabolismo , Histidina Quinasa/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Histidina Quinasa/genética , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda