Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Animals (Basel) ; 14(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38929399

RESUMEN

Spurs, which mainly appear in roosters, are protrusions near the tarsometatarsus on both sides of the calves of chickens, and are connected to the tarsometatarsus by a bony core. As a male-biased morphological characteristic, the diameter and length of spurs vary significantly between different individuals, mainly related to genetics and age. As a specific behavior of hens, egg-laying also varies greatly between individuals in terms of traits such as age at first egg (AFE), egg weight (EW), and so on. At present, there are few studies on chicken spurs. In this study, we investigated the inheritance pattern of the spur trait in roosters with different phenotypes and the correlations between spur length, body weight at 18 weeks of age (BW18), shank length at 18 weeks of age (SL18), and the egg-laying trait in hens (both hens and roosters were from the same population and were grouped according to their family). These traits related to egg production included AFE, body weight at first egg (BWA), and first egg weight (FEW). We estimated genetic parameters based on pedigree and phenotype data, and used variance analysis to calculate broad-sense heritability for correcting the parameter estimation results. The results showed that the heritability of male left and right spurs ranged from 0.6 to 0.7. There were significant positive correlations between left and right spur length, BW18, SL18, and BWA, as well as between left and right spur length and AFE. We selected 35 males with the longest spurs and 35 males with the shortest spurs in the population, and pooled them into two sets to obtain the pooled genome sequencing data. After genome-wide association and genome divergency analysis by FST, allele frequency differences (AFDs), and XPEHH methods, we identified 7 overlapping genes (CENPE, FAT1, FAM149A, MANBA, NFKB1, SORBS2, UBE2D3) and 14 peak genes (SAMD12, TSPAN5, ENSGALG00000050071, ENSGALG00000053133, ENSGALG00000050348, CNTN5, TRPC6, ENSGALG00000047655,TMSB4X, LIX1, CKB, NEBL, PRTFDC1, MLLT10) related to left and right spur length through genome-wide selection signature analysis and a genome-wide association approach. Our results identified candidate genes associated with chicken spurs, which helps to understand the genetic mechanism of this trait and carry out subsequent research around it.

2.
Poult Sci ; 103(6): 103685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603937

RESUMEN

As a Chinese local chicken breed, Hongshan chickens have 2 kinds of tail feather phenotypes, normal and taillessness. Our previous studies showed that taillessness was a sex-linked dominant trait. Abnormal development of the tail vertebrae could be explained this phenomenon in some chicken breeds. However, the number of caudal vertebrae in rumpless Hongshan chickens was normal, so rumplessness in Hongshan chicken was not related to the development of the caudal vertebrae. Afterwards, we found that rumplessness in Hongshan was due to abnormal development of tail feather rather than abnormal development of caudal vertebrae. In order to understand the genetic foundation of the rumplessness of Hongshan chickens, we compared and reanalyzed 2 sets of data in normal and rumpless Hongshan chickens from our previous studies. By joint analysis of genome-wide selection signature analysis and genome-wide association approach, we found that 1 overlapping gene (EDIL3) and 16 peak genes (ENSGALG00000051843, ENSGALG00000053498, ENSGALG00000054800, KIF27, PTPRD, ENSGALG00000047579, ENSGALG00000041052, ARHGEF28, CAMK4, SERINC5, ENSGALG00000050776, ERCC8, MCC, ADAMTS19, ENSGALG00000053322, CHRNA8) located on the Z chromosome was associated with the rumpless trait. The results of this study furtherly revealed the molecular mechanism of the rumpless trait in Hongshan chickens, and identified the candidate genes associated with this trait. Our results will help to improve the shape of chicken tail feathers and to rise individual economic value in some specific market in China.


Asunto(s)
Pollos , Animales , Pollos/genética , Masculino , Femenino , Plumas , Cola (estructura animal)/anatomía & histología , Estudio de Asociación del Genoma Completo/veterinaria , Fenotipo , China
3.
Poult Sci ; 103(6): 103694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663207

RESUMEN

Plumage color is a characteristic trait of ducks that originates as a result of natural and artificial selection. As a conspicuous phenotypic feature, it is a breed characteristic. Previous studies have identified some genes associated with the formation of black and white plumage in ducks. However, studies on the genetic basis underlying the red plumage phenotype in ducks are limited. Here, genome-wide association analysis (GWAS) and selection signal detection (Fst, θπ ratio, and cross-population composite likelihood ratio [XP-CLR]) were conducted to identify candidate regions and genes underlying duck plumage color phenotype. Selection signal detection revealed 29 overlapping genes (including ENPP1 and ULK1) significantly associated with red plumage color in Ji'an Red ducks. ENSAPLG00000012679, ESRRG, and SPATA5 were identified as candidate genes associated with red plumage using GWAS. Selection signal detection revealed that 19 overlapping genes (including GMDS, PDIA6, and ODC1) significantly correlated with light brown plumage in Brown Tsaiya ducks. GWAS to narrow down the significant regions further revealed nine candidate genes (AKT1, ATP6V1C2, GMDS, LRP4, MAML3, PDIA6, PLD5, TMEM63B, and TSPAN8). Notably, in Brown Tsaiya ducks, GMDS, ODC1, and PDIA6 exhibit significantly differentiated allele frequencies among other feather-colored ducks, while in Ji'an Red ducks, ENSAPLG00000012679 has different allele frequency distributions compared with that in other feather-colored ducks. This study offers new insights into the variation and selection of the red plumage phenotype using GWAS and selective signals.


Asunto(s)
Patos , Plumas , Estudio de Asociación del Genoma Completo , Pigmentación , Secuenciación Completa del Genoma , Animales , Patos/genética , Patos/fisiología , Estudio de Asociación del Genoma Completo/veterinaria , Pigmentación/genética , Secuenciación Completa del Genoma/veterinaria , Fenotipo , Genoma
4.
Poult Sci ; 103(6): 103627, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593551

RESUMEN

The age of first egg (AFE) in chicken can affect early and even life-time egg production performance to some extent, and therefore is an important economic trait that affects production efficiency. To better understand the genetic patterns of AFE and other production traits including body weight at first egg (BWA), first egg weight (FEW), and total egg number from AFE to 58 wk of age (total-EN), we recorded the production performance of 2 widely used layer breeds, white leghorn (WL) and Rhode Island Red (RIR) and estimated genetic parameters based on pedigree and production data. The results showed that the heritability of AFE in both breeds ranged from 0.4 to 0.6, and AFE showed strong positive genetic and phenotypic correlations to BWA as well as FEW, while showing strong negative genetic and phenotypic correlations with total-EN. Furtherly, by genome-wide association analysis study (GWAS), we identified 12 and 26 significant SNPs to be related to AFE in the 2-layer breeds, respectively. A total of 18 genes were identified that could affect AFE based on the significant SNP annotations obtained, but there were no gene overlapped in the 2 breeds indicating the genetic foundation of AFE could differ from breed to breed. Our results provided a deeper understanding of genetic patterns and molecular basement of AFE in different breeds and could help in the selection of egg production traits.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Pollos/fisiología , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple , Óvulo/fisiología , Fenotipo , Oviposición/genética
5.
Poult Sci ; 103(6): 103666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703454

RESUMEN

The bird beak is mainly functioned as feeding and attacking, and its shape has extremely important significance for survival and reproduction. In chickens, since beak shape could lead to some disadvantages including pecking and waste of feed, it is important to understand the inheritance of chicken beak shape. In the present study, we firstly established 4 indicators to describe the chicken beak shapes, including upper beak length (UL), lower beak length (LL), distance between upper and lower beak tips (DB) and upper beak curvature (BC). And then, we measured the 4 beak shape indicators as well as some production traits including body weight (BW), shank length (SL), egg weight (EW), eggshell strength (ES) of a layer breed, Rhode Island Red (RIR), in order to estimate genetic parameters of chicken beak shape. The heritabilities of UL and LL were 0.41 and 0.37, and the heritabilities of DB and BC were 0.22 and 0.21, indicating that beak shape was a highly or mediumly heritable. There were significant positive genetic and phenotypic correlations among UL, LL, and DB. And UL was positively correlated with body weight (BW18) and shank length (SL18) at 18 weeks of age in genetics, and DB was positively correlated with BC in terms of genetics and phenotype. We also found that layers of chicken cages played a role on beak shape, which could be attributed to the difference of lightness in different cage layers. By a genome-wide association study (GWAS) for the chicken UL, we identified 9 significant candidate genes associated with UL in RIR. For the variants with low minor allele frequencies (MAF <0.01) and outside of high linkage disequilibrium (LD) regions, we also conducted rare variant association studies (RVA) and GWAS to find the association between genotype and phenotype. We also analyzed transcriptomic data from multiple tissues of chicken embryos and revealed that all of the 9 genes were highly expressed in beak of chicken embryos, indicating their potential function for beak development. Our results provided the genetic foundation of chicken beak shape, which could help chicken breeding on beak related traits.


Asunto(s)
Pico , Pollos , Animales , Pollos/genética , Pollos/anatomía & histología , Pollos/fisiología , Pollos/crecimiento & desarrollo , Pico/anatomía & histología , Femenino , Fenotipo , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda