RESUMEN
Adult tissue stem cells (SCs) reside in niches, which, through intercellular contacts and signaling, influence SC behavior. Once activated, SCs typically give rise to short-lived transit-amplifying cells (TACs), which then progress to differentiate into their lineages. Here, using single-cell RNA-seq, we unearth unexpected heterogeneity among SCs and TACs of hair follicles. We trace the roots of this heterogeneity to micro-niches along epithelial-mesenchymal interfaces, where progenitors display molecular signatures reflective of spatially distinct local signals and intercellular interactions. Using lineage tracing, temporal single-cell analyses, and chromatin landscaping, we show that SC plasticity becomes restricted in a sequentially and spatially choreographed program, culminating in seven spatially arranged unilineage progenitors within TACs of mature follicles. By compartmentalizing SCs into micro-niches, tissues gain precise control over morphogenesis and regeneration: some progenitors specify lineages immediately, whereas others retain potency, preserving self-renewing features established early while progressively restricting lineages as they experience dynamic changes in microenvironment.
Asunto(s)
Células Madre Adultas/citología , Linaje de la Célula , Folículo Piloso/citología , Nicho de Células Madre , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Vía de Señalización WntRESUMEN
Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.
Asunto(s)
Carcinoma de Células Escamosas/patología , Linaje de la Célula , Células Epidérmicas , Folículo Piloso/citología , Neoplasias Cutáneas/patología , Piel/citología , Células Madre/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Epidermis/metabolismo , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Cutáneas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Trasplante Heterólogo , Cicatrización de HeridasRESUMEN
Body fat distribution is a heritable risk factor for cardiovascular and metabolic disease. In humans, rare Inhibin beta E (INHBE, activin E) loss-of-function variants are associated with a lower waist-to-hip ratio and protection from type 2 diabetes. Hepatic fatty acid sensing promotes INHBE expression during fasting and in obese individuals, yet it is unclear how the hepatokine activin E governs body shape and energy metabolism. Here, we uncover activin E as a regulator of adipose energy storage. By suppressing ß-agonist-induced lipolysis, activin E promotes fat accumulation and adipocyte hypertrophy and contributes to adipose dysfunction in mice. Mechanistically, we demonstrate that activin E elicits its effect on adipose tissue through ACVR1C, activating SMAD2/3 signaling and suppressing PPARG target genes. Conversely, loss of activin E or ACVR1C in mice increases fat utilization, lowers adiposity, and drives PPARG-regulated gene signatures indicative of healthy adipose function. Our studies identify activin E-ACVR1C as a metabolic rheostat promoting liver-adipose cross talk to restrain excessive fat breakdown and preserve fat mass during prolonged fasting, a mechanism that is maladaptive in obese individuals.
Asunto(s)
Diabetes Mellitus Tipo 2 , Lipólisis , Humanos , Ratones , Animales , Activinas/metabolismo , Adiposidad/genética , Diabetes Mellitus Tipo 2/metabolismo , PPAR gamma/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismoRESUMEN
Alphaviruses, such as the Sindbis virus and the Chikungunya virus, are RNA viruses with a positive sense single-stranded RNA genome that infect various vertebrates, including humans. A conserved sequence element (CSE) of â¼19 nt in the 3' noncoding region is important for replication. Despite extensive mutational analysis of the CSE, no comprehensive model of this element exists to date. Here, it is shown that the CSE can form an RNA pseudoknot with part of the poly(A) tail and is similar to the human telomerase pseudoknot with which it shares 17 nt. Mutants that alter the stability of the pseudoknot were investigated in the context of a replicon of the Sindbis virus and by native gel electrophoresis. These studies reveal that the pseudoknot is required for virus replication and is stabilized by UAU base triples. The new model is discussed in relation to previous data on Sindbis virus mutants and revertants lacking (part of) the CSE.
Asunto(s)
Telomerasa , Animales , Humanos , ARN , ARN Mensajero , ARN Viral/genética , Virus Sindbis/genética , Replicación Viral/genéticaRESUMEN
V-set and immunoglobulin domain-containing 4 (VSIG4) is a complement receptor of the immunoglobulin superfamily that is specifically expressed on tissue resident macrophages, and its many reported functions and binding partners suggest a complex role in immune function. VSIG4 is reported to have a role in immune surveillance as well as in modulating diverse disease phenotypes such as infections, autoimmune conditions, and cancer. However, the mechanism(s) governing VSIG4's complex, context-dependent role in immune regulation remains elusive. Here, we identify cell surface and soluble glycosaminoglycans, specifically heparan sulfates, as novel binding partners of VSIG4. We demonstrate that genetic deletion of heparan sulfate synthesis enzymes or cleavage of cell-surface heparan sulfates reduced VSIG4 binding to the cell surface. Furthermore, binding studies demonstrate that VSIG4 interacts directly with heparan sulfates, with a preference for highly sulfated moieties and longer glycosaminoglycan chains. To assess the impact on VSIG4 biology, we show that heparan sulfates compete with known VSIG4 binding partners C3b and iC3b. Furthermore, mutagenesis studies indicate that this competition occurs through overlapping binding epitopes for heparan sulfates and complement on VSIG4. Together these data suggest a novel role for heparan sulfates in VSIG4-dependent immune modulation.
Asunto(s)
Glicosaminoglicanos , Heparitina Sulfato , Heparitina Sulfato/metabolismo , Glicosaminoglicanos/metabolismo , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Membrana Celular/metabolismo , SulfatosRESUMEN
OBJECTIVES: The goals of this paper are (1) to identify groups of healthy people and (2) to quantify the extent to which the Dutch risk adjustment (RA) model overpays insurers for these groups. BACKGROUND: There have been strong signals that insurers in the Dutch regulated health insurance market engage in actions to attract healthy people. A potential explanation for this behavior is that the Dutch RA model overpays insurers for healthy people. METHODS: We identify healthy groups using 3 types of ex-ante information (ie, information available before the start of the health insurance contract): administrative data on prior spending for specific health care services (N = 17 m), diagnoses from electronic patient records (N = 1.3 m), and health survey data (N = 457 k). In a second step, we calculate the under/overpayment for these groups under the Dutch RA model (version: 2021). RESULTS: We distinguish eight groups of healthy people using various "identifiers." Although the Dutch RA model substantially reduces the predictable profits that insurers face for these groups, significant profits remain. The mean per person overpayment ranges from 38 euros (people with hospital spending below the third quartile in each of 3 prior years) to 167 euros (those without any medical condition according to their electronic patient record). CONCLUSIONS: The Dutch RA model does not eliminate the profitability of healthy groups. The identifiers used for flagging these groups, however, seem inappropriate for serving as risk adjuster variables. An alternative way of exploiting these identifiers and eliminating the profitability of healthy groups is to estimate RA models with "constrained regression."
RESUMEN
BACKGROUND: Childhood trauma increases risk for psychopathology and cognitive impairment. Prior research mainly focused on the hippocampus and amygdala in single diagnostic categories. However, other brain regions may be impacted by trauma as well, and effects may be independent of diagnosis. This cross-sectional study investigated cortical and subcortical gray matter volume in relation to childhood trauma severity. METHODS: We included 554 participants: 250 bipolar-I patients, 84 schizophrenia-spectrum patients and 220 healthy individuals without a psychiatric history. Participants filled in the Childhood Trauma Questionnaire. Anatomical T1 MRI scans were acquired at 3T, regional brain morphology was assessed using Freesurfer. RESULTS: In the total sample, trauma-related gray matter reductions were found in the frontal lobe (ß = -0.049, p = 0.008; q = 0.048), this effect was driven by the right medial orbitofrontal, paracentral, superior frontal regions and the left precentral region. No trauma-related volume reductions were observed in any other (sub)cortical lobes nor the hippocampus or amygdala, trauma-by-group (i.e. both patient groups and healthy subjects) interaction effects were absent. A categorical approach confirmed a pattern of more pronounced frontal gray matter reductions in individuals reporting multiple forms of trauma and across quartiles of cumulative trauma scores. Similar dose-response patterns were revealed within the bipolar and healthy subgroups, but did not reach significance in schizophrenia-spectrum patients. CONCLUSIONS: Findings show that childhood trauma is linked to frontal gray matter reductions, independent of psychiatric morbidity. Our results indicate that childhood trauma importantly contributes to the neurobiological changes commonly observed across psychiatric disorders. Frontal volume alterations may underpin affective and cognitive disturbances observed in trauma-exposed individuals.
Asunto(s)
Experiencias Adversas de la Infancia , Sustancia Gris , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Estudios Transversales , Encéfalo/patología , Imagen por Resonancia Magnética/métodosRESUMEN
Xrn1-resistant RNA structures are multifunctional elements employed by an increasing number of RNA viruses. One of such elements is the coremin motif, discovered in plant virus RNAs, of which the structure has been hypothesized to form a yet unelucidated pseudoknot. Recently, the coremin motif was shown to be capable of stalling not only Xrn1, but scanning ribosomes as well. Following that observation, in this study we demonstrate that the coremin motif can promote -1 ribosomal frameshifting, similar to better-characterized viral frameshifting pseudoknots. Since this function was lost in concert with substitutions that were known to disturb Xrn1-resistance, we developed a frameshifting screen for finding novel Xrn1-resistant RNAs by randomizing parts of the coremin motif. This yielded new insights into the coremin motif structure, as Xrn1-resistant variations were identified that more clearly indicate a pseudoknot interaction. In addition, we show that the Xrn1-resistant RNA of Zika virus promotes frameshifting as well, while known -1 programmed ribosomal frameshifting pseudoknots do not stall Xrn1, suggesting that promoting frameshifting is a universal characteristic of Xrn1-resistant RNAs, but that Xrn1-resistance requires more than just a frameshifting pseudoknot.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , ARN Viral/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico , Sistema de Lectura Ribosómico , Ribosomas/metabolismo , Virus Zika/genética , Infección por el Virus Zika/genéticaRESUMEN
MOTIVATION: The Flavivirus genus includes several important pathogens, such as Zika, dengue and yellow fever virus. Flavivirus RNA genomes contain a number of functionally important structures in their 3' untranslated regions (3'UTRs). Due to the diversity of sequences and topologies of these structures, their identification is often difficult. In contrast, predictions of such structures are important for understanding of flavivirus replication cycles and development of antiviral strategies. RESULTS: We have developed an algorithm for structured pattern search in RNA sequences, including secondary structures, pseudoknots and triple base interactions. Using the data on known conserved flavivirus 3'UTR structures, we constructed structural descriptors which covered the diversity of patterns in these motifs. The descriptors and the search algorithm were used for the construction of a database of flavivirus 3'UTR structures. Validating this approach, we identified a number of domains matching a general pattern of exoribonuclease Xrn1-resistant RNAs in the growing group of insect-specific flaviviruses. AVAILABILITY AND IMPLEMENTATION: The Leiden Flavivirus RNA Structure Database is available at https://rna.liacs.nl. The search algorithm is available at https://github.com/LeidenRNA/SRHS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Flavivirus , ARN Viral/química , Regiones no Traducidas 3' , Algoritmos , Flavivirus/genética , Conformación de Ácido NucleicoRESUMEN
INTRODUCTION: For patients with stage III melanoma with occult lymph node metastasis, the use of adjuvant therapy is increasing, and completion lymph node dissection (CLND) is decreasing. We sought to evaluate the use of modern adjuvant therapy and outcomes for patients with stage III melanoma who did not undergo CLND. METHODS: Patients with a positive SLNB from 2015 to 2020 who did not undergo CLND were evaluated retrospectively. Nodal recurrence, recurrence-free survival (RFS), distant metastasis-free survival (DMFS), and melanoma-specific survival were evaluated. RESULTS: Among 90 patients, 56 (62%) received adjuvant therapy and 34 (38%) underwent observation alone. Patients who received adjuvant therapy were younger (mean age: 53 vs. 65, p < 0.001) and had higher overall stage (Stage IIIb/c 75% vs. 54%, p = 0.041). Disease recurred in 12 of 34 patients (35%) in the observation group and 11 of 56 patients (20%) in the adjuvant therapy group. The most common first site of recurrence was distant recurrence alone (5/34 patients) in the observation group and nodal recurrence alone (8/90 patients) in the adjuvant therapy group. Despite more adverse nodal features in the adjuvant therapy group, 24-month nodal recurrence rate and RFS were not significantly different between the adjuvant and observation cohorts (nodal recurrence rate: 26% vs. 20%, p = 0.68; RFS: 75% vs. 61%, p = 0.39). Among patients with stage IIIb/c disease, adjuvant therapy was associated with a significantly improved 24-month DMFS (86% vs. 59%, p = 0.04). CONCLUSIONS: In this early report, modern adjuvant therapy in patients who forego CLND is associated with longer DMFS among patients with stage IIIb/c disease.
Asunto(s)
Melanoma , Ganglio Linfático Centinela , Neoplasias Cutáneas , Humanos , Escisión del Ganglio Linfático , Melanoma/cirugía , Persona de Mediana Edad , Estudios Retrospectivos , Biopsia del Ganglio Linfático Centinela , Neoplasias Cutáneas/cirugíaRESUMEN
Health insurance markets with community-rated premiums typically include risk adjustment (RA) to mitigate selection problems. Over the past decades, RA systems have evolved from simple demographic models to sophisticated morbidity-based models. Even the most sophisticated models, however, tend to overcompensate people with persistently low spending and undercompensate those with persistently high spending. This paper compares three methods that exploit spending-level persistence for improving health plan payment systems: (1) implementation of spending-based risk adjustors, (2) implementation of high-risk pooling for people with multiple-year high spending, and (3) indirect use of spending persistence via constrained regression. Based on incentive measures for risk selection and cost control, we conclude that a combination of the last two options can substantially outperform the first, which is currently used in the health plan payment system in the Netherlands.
Asunto(s)
Gastos en Salud , Seguro de Salud , Humanos , Asistencia Médica , Morbilidad , Ajuste de Riesgo/métodos , Estados UnidosRESUMEN
Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its working mechanism remains unclear. In the animal analog of ECT, neurogenesis in the dentate gyrus (DG) of the hippocampus is observed. In humans, volume increase of the hippocampus has been reported, but accurately measuring the volume of subfields is limited with common MRI protocols. If the volume increase of the hippocampus in humans is attributable to neurogenesis, it is expected to be exclusively present in the DG, whereas other processes (angiogenesis, synaptogenesis) also affect other subfields. Therefore, we acquired an optimized MRI scan at 7-tesla field strength allowing sensitive investigation of hippocampal subfields. A further increase in sensitivity of the within-subjects measurements is gained by automatic placement of the field of view. Patients receive two MRI scans: at baseline and after ten bilateral ECT sessions (corresponding to a 5-week interval). Matched controls are also scanned twice, with a similar 5-week interval. A total of 31 participants (23 patients, 8 controls) completed the study. A large and significant increase in DG volume was observed after ECT (M = 75.44 mm3, std error = 9.65, p < 0.001), while other hippocampal subfields were unaffected. We note that possible type II errors may be present due to the small sample size. In controls no changes in volume were found. Furthermore, an increase in DG volume was related to a decrease in depression scores, and baseline DG volume predicted clinical response. These findings suggest that the volume change of the DG is related to the antidepressant properties of ECT, and may reflect neurogenesis.
Asunto(s)
Giro Dentado , Depresión/patología , Depresión/terapia , Terapia Electroconvulsiva , Tamaño de los Órganos , Giro Dentado/citología , Giro Dentado/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana EdadRESUMEN
After infection by flaviviruses like Zika and West Nile virus, eukaryotic hosts employ the well-conserved endoribonuclease Xrn1 to degrade the viral genomic RNA. Within the 3' untranslated regions, this enzyme encounters intricate Xrn1-resistant structures. This results in the accumulation of subgenomic flaviviral RNAs, an event that improves viral growth and aggravates viral pathogenicity. Xrn1-resistant RNAs have been established throughout the flaviviral genus, but not yet throughout the entire Flaviviridae family. In this work, we use previously determined characteristics of these structures to identify homologous sequences in many members of the genera pegivirus, hepacivirus and pestivirus. We used structural alignment and mutational analyses to establish that these sequences indeed represent Xrn1-resistant RNA and that they employ the general features of the flaviviral xrRNAs, consisting of a double pseudoknot formed by five base-paired regions stitched together by a crucial triple base interaction. Furthermore, we demonstrate that the pestivirus Bungowannah virus produces subgenomic RNA in vivo. Altogether, these results indicate that viruses make use of a universal Xrn1-resistant RNA throughout the Flaviviridae family.
Asunto(s)
Regiones no Traducidas 3'/genética , Exorribonucleasas/genética , Infecciones por Flaviviridae/genética , Flaviviridae/genética , Motivos de Nucleótidos , ARN Viral/genética , Animales , Exorribonucleasas/metabolismo , Flaviviridae/clasificación , Infecciones por Flaviviridae/metabolismo , Infecciones por Flaviviridae/virología , Genoma Viral , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Viral/química , PorcinosRESUMEN
Adult stem cells occur in niches that balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, stem cells outside their niche often display fate flexibility. Here we show that super-enhancers underlie the identity, lineage commitment and plasticity of adult stem cells in vivo. Using hair follicle as a model, we map the global chromatin domains of hair follicle stem cells and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters ('epicentres') of transcription factor binding sites undergo remodelling upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicentres, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, hair follicle stem cells dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicentres, enabling their genes to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of hair follicle stem cell super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense transcription-factor-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status but also stemness, plasticity in transitional states and differentiation.
Asunto(s)
Adaptación Fisiológica , Células Madre Adultas/citología , Diferenciación Celular/genética , Linaje de la Célula/genética , Elementos de Facilitación Genéticos/genética , Folículo Piloso/citología , Factor de Transcripción SOX9/metabolismo , Células Madre Adultas/metabolismo , Animales , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , Femenino , Ratones , Especificidad de Órganos , Nicho de Células Madre , Factores de TiempoRESUMEN
BACKGROUND: Accurately predicting which patients with chronic heart failure (CHF) are particularly vulnerable for adverse outcomes is of crucial importance to support clinical decision making. The goal of the current study was to examine the predictive value on long term heart failure (HF) hospitalisation and all-cause mortality in CHF patients, by exploring and exploiting machine learning (ML) and traditional statistical techniques on a Dutch health insurance claims database. METHODS: Our study population consisted of 25,776 patients with a CHF diagnosis code between 2012 and 2014 and one year and three years follow-up HF hospitalisation (1446 and 3220 patients respectively) and all-cause mortality (2434 and 7882 patients respectively) were measured from 2015 to 2018. The area under the receiver operating characteristic (ROC) curve (AUC) was calculated after modelling the data using Logistic Regression, Random Forest, Elastic Net regression and Neural Networks. RESULTS: AUC rates ranged from 0.710 to 0.732 for 1-year HF hospitalisation, 0.705-0.733 for 3-years HF hospitalisation, 0.765-0.787 for 1-year mortality and 0.764-0.791 for 3-years mortality. Elastic Net performed best for all endpoints. Differences between techniques were small and only statistically significant between Elastic Net and Logistic Regression compared with Random Forest for 3-years HF hospitalisation. CONCLUSION: In this study based on a health insurance claims database we found clear predictive value for predicting long-term HF hospitalisation and mortality of CHF patients by using ML techniques compared to traditional statistics.
Asunto(s)
Insuficiencia Cardíaca , Hospitalización , Humanos , Modelos Logísticos , Aprendizaje Automático , Curva ROCRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic led to the need for tracking of physical contacts and potential exposure to disease. Traditional contact tracing can be augmented by electronic tools called "electronic contact tracing" or "exposure notification.". Some methods were built to work with smartphones; however, smartphones are not prevalent in some high-contact areas (e.g., schools and nursing homes). We present the design and initial testing of low-cost, highly privacy preserving wearable exposure notification devices. Several devices were constructed based on existing hardware and operated independently of a smartphone. The method (devices and analyses) was not able to reliably use the received signal strength indicator (RSSI) as a proxy for distance between pairs of devices; the accuracy of RSSI as a proxy for distance decreased dramatically outside of the idealized conditions. However, even an imperfect device could be useful for research on how people use and move through spaces. With some improvement, these devices could be used to understand disease spread and human or animal interaction in indoor environments.
RESUMEN
Angiopoietin-like protein (ANGPTL)3 regulates plasma lipids by inhibiting LPL and endothelial lipase (EL). ANGPTL3 inactivation lowers LDL-C independently of the classical LDLR-mediated pathway and represents a promising therapeutic approach for individuals with homozygous familial hypercholesterolemia due to LDLR mutations. Yet, how ANGPTL3 regulates LDL-C levels is unknown. Here, we demonstrate in hyperlipidemic humans and mice that ANGPTL3 controls VLDL catabolism upstream of LDL. Using kinetic, lipidomic, and biophysical studies, we show that ANGPTL3 inhibition reduces VLDL-lipid content and size, generating remnant particles that are efficiently removed from the circulation. This suggests that ANGPTL3 inhibition lowers LDL-C by limiting LDL particle production. Mechanistically, we discovered that EL is a key mediator of ANGPTL3's novel pathway. Our experiments revealed that, although dispensable in the presence of LDLR, EL-mediated processing of VLDL becomes critical for LDLR-independent particle clearance. In the absence of EL and LDLR, ANGPTL3 inhibition perturbed VLDL catabolism, promoted accumulation of atypical remnants, and failed to reduce LDL-C. Taken together, we uncover ANGPTL3 at the helm of a novel EL-dependent pathway that lowers LDL-C in the absence of LDLR.
Asunto(s)
Proteínas Similares a la Angiopoyetina/metabolismo , LDL-Colesterol/sangre , VLDL-Colesterol/sangre , Proteína 3 Similar a la Angiopoyetina , Animales , Endotelio/metabolismo , Humanos , Ratones , Receptores de LDL/metabolismoRESUMEN
Intermolecular processes offer unique decay mechanisms for complex systems to internally relax. Here, we report the observation of an intermolecular Coulombic decay channel in an endohedral fullerene, a holmium nitride complex (Ho_{3}N) embedded within a C_{80} fullerene, between neighboring holmium ions, and between the holmium complex and the carbon cage. By measuring the ions and the electrons in coincidence after XUV photoabsorption, we can isolate the different decay channels, which are found to be more prevalent relative to intra-atomic Auger decay.
RESUMEN
BACKGROUND: Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia, but they can also appear in otherwise healthy individuals. Imaging studies implicate language networks in the generation of AVH; however, it remains unclear if alterations reflect biologic substrates of AVH, irrespective of diagnostic status, age, or illness-related factors. We applied multimodal imaging to identify AVH-specific pathology, evidenced by overlapping gray or white matter deficits between schizophrenia patients and healthy voice-hearers. METHODS: Diffusion-weighted and T1-weighted magnetic resonance images were acquired in 35 schizophrenia patients with AVH (SCZ-AVH), 32 healthy voice-hearers (H-AVH), and 40 age- and sex-matched controls without AVH. White matter fractional anisotropy (FA) and gray matter thickness (GMT) were computed for each region comprising ICBM-DTI and Desikan-Killiany atlases, respectively. Regions were tested for significant alterations affecting both SCZ-AVH and H-AVH groups, relative to controls. RESULTS: Compared with controls, the SCZ-AVH showed widespread FA and GMT reductions; but no significant differences emerged between H-AVH and control groups. While no overlapping pathology appeared in the overall study groups, younger (<40 years) H-AVH and SCZ-AVH subjects displayed overlapping FA deficits across four regions (p < 0.05): the genu and splenium of the corpus callosum, as well as the anterior limbs of the internal capsule. Analyzing these regions with free-water imaging ascribed overlapping FA abnormalities to tissue-specific anisotropy changes. CONCLUSIONS: We identified white matter pathology associated with the presence of AVH, independent of diagnostic status. However, commonalities were constrained to younger and more homogenous groups, after reducing pathologic variance associated with advancing age and chronicity effects.
Asunto(s)
Alucinaciones/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Estudios de Casos y Controles , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Imagen de Difusión Tensora , Femenino , Alucinaciones/patología , Alucinaciones/psicología , Humanos , Cápsula Interna/diagnóstico por imagen , Cápsula Interna/patología , Masculino , Persona de Mediana Edad , Esquizofrenia/complicaciones , Esquizofrenia/patología , Sustancia Blanca/patologíaRESUMEN
Adult organisms rely on tissue stem cells for maintenance and repair. During homeostasis, the concerted action of local niche signals and epigenetic regulators establish stable gene expression patterns to ensure that stem cells are not lost over time. However, stem cells also provide host tissues with a remarkable plasticity to respond to perturbations. How adult stem cells choose and acquire new fates is unknown, but the genome-wide mapping of epigenetic landscapes suggests a critical role for chromatin remodeling in these processes. Here, we explore the emerging role of chromatin modifiers and pioneer transcription factors in adult stem cell fate decisions and plasticity, which ensure that selective lineage choices are only made when environmentally cued.