Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Gastroenterol ; 22(1): 89, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227196

RESUMEN

BACKGROUND: Intestinal tuberculosis still has a high incidence, especially in developing countries. The biggest challenge of this disease is the establishment of the diagnosis because the clinical features are not typical. Investigations such as culture, acid-fast bacilli (AFB) staining, and histopathology have low sensitivity, so other investigations are needed. Latest molecular-based diagnostic modalities such as GeneXpert, interferon-gamma (IFN-γ) release assays (IGRA), polymerase chain reaction (PCR), multiplex-PCR, and immunological markers are expected to help diagnose intestinal tuberculosis. This article review will examine the latest diagnostic modalities that can be used as a tool in establishing the diagnosis of intestinal tuberculosis. RESULTS: Through a literature search, we were able to review the diagnostic values of various available diagnostic modalities as the appropriate additional test in intestinal tuberculosis. Culture as a gold standard has a sensitivity and specificity value of 9.3% and 100% with the MGIT BACTEC system as the most recommended medium. The sensitivity values of AFB staining, histopathology examination, GeneXpert, IGRA, PCR, multiplex-PCR and, immunological markers were ranged between 17.3 and 31%; 68%; 81-95.7%; 74-88%; 21.6-65%; 75.7-93.1%; and 52-87%, respectively. Meanwhile the specificity values were 100%; 77.1%; 91-100%; 74-87%; 93-100%; 96.4-100%; and 70-95%, respectively. CONCLUSION: The combination of clinical examination, conventional examination, and the latest molecular-based examination is the best choice for establishing the diagnosis of intestinal tuberculosis. Most recent modalities such as multiplex PCR and immunological marker examinations are diagnostic tools that deserve to be used in diagnosing intestinal tuberculosis as their sensitivity and specificity values are quite high and more evidences are expected to support the application of these examinations shortly soon.


Asunto(s)
Mycobacterium tuberculosis , Peritonitis Tuberculosa , Tuberculosis Gastrointestinal , Humanos , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Tuberculosis Gastrointestinal/diagnóstico
2.
J Genet Eng Biotechnol ; 20(1): 143, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251225

RESUMEN

BACKGROUND: Skeletal muscle mishaps are the most well-known incidents in society, especially among athletes and the military population. From the various urgency, this accident needs to be cured more quickly. However, the current treatment still has some shortcomings and is less effective. In this case, Paired box 3 and Paired box 7 (Pax3/Pax7) proteins that induce stem cells could potentially be an alternative treatment for skeletal muscle injuries. This paper aimed to analyse the potential treatment of Pax3/Pax7 proteins inducing the stem cell for skeletal muscle injuries. We did a narrative review by gathering several scientific journals from several leading platforms like PubMed and Scopus. As common accidents, skeletal muscle disease could be due to workplace and non-workplace causes. The highest risk occurs in the athlete and military environment. The treatment of current skeletal muscle injuries is protection, rest, ice, compression, and elevation (PRICE), non-steroidal anti-inflammatory drugs (NSAIDs), and mechanical stimulation. However, it is considered less effective, especially in NSAIDs, inhibiting myogenic cell proliferation. The current finding indicates that the stem cells have markers known as Pax3/Pax7. The role of both markers in muscle injury, Pax3/Pax7, as transcription factors will induce cell division by H3K4 methylation mechanisms and chromatin modifications that stimulate gene activation. CONCLUSION: Regulation by Pax3/Pax7 factors that affect stem cells and stem cell proliferation is one of the alternative treatments. This regulation can accelerate the healing of injury victims, especially injuries to the skeletal muscles. Finally, after being compared, Pax3/Pax7 induces stem cells to have the potential to be one of the skeletal muscle injury treatments.

3.
PLoS One ; 15(12): e0244358, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362261

RESUMEN

Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms.


Asunto(s)
Bacteriemia/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/genética , Escherichia coli/patogenicidad , Escherichia coli Patógena Extraintestinal/aislamiento & purificación , Genoma Bacteriano , Humanos , Evasión Inmune , Tipificación de Secuencias Multilocus , Filogenia , Factores de Virulencia/genética , Secuenciación Completa del Genoma
4.
Data Brief ; 30: 105631, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32395590

RESUMEN

Bloodstream infections (BSIs) are some of the most devastating preventable complications in critical care units. Of the bacterial causes of BSIs, Escherichia coli is the most common among Enterobacteriaceae. Bacteria resistant to therapeutic antibiotics represent a significant global health challenge. In this study, we present whole genome sequence data of 22 E. coli isolates that were obtained from bloodstream infection patients admitted to Cipto Mangunkusumo National Hospital, Jakarta, Indonesia. These data will be useful for analysing the serotypes, virulence genes, and antimicrobial resistance genes of E. coli. DNA sequences of E. coli were obtained using the Illumina MiSeq platform. The FASTQ raw files of these sequences are available under BioProject accession number PRJNA596854 and Sequence Read Archive accession numbers SRR10761126-SRR10761147.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda