Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Commun Biol ; 6(1): 161, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759717

RESUMEN

Fibrotic changes in the myocardium and cardiac arrhythmias represent fatal complications in systemic sclerosis (SSc), however the underlying mechanisms remain elusive. Mice overexpressing transcription factor Fosl-2 (Fosl-2tg) represent animal model of SSc. Fosl-2tg mice showed interstitial cardiac fibrosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks and reduced HR variability. Following stimulation with isoproterenol Fosl-2tg mice showed impaired HR response. In contrast to Fosl-2tg, immunodeficient Rag2-/-Fosl-2tg mice were protected from enhanced myocardial fibrosis and ECG abnormalities. Transcriptomics analysis demonstrated that Fosl-2-overexpression was responsible for profibrotic signature of cardiac fibroblasts, whereas inflammatory component in Fosl-2tg mice activated their fibrotic and arrhythmogenic phenotype. In human cardiac fibroblasts FOSL-2-overexpression enhanced myofibroblast signature under proinflammatory or profibrotic stimuli. These results demonstrate that under immunofibrotic conditions transcription factor Fosl-2 exaggerates myocardial fibrosis, arrhythmias and aberrant response to stress.


Asunto(s)
Cardiomiopatías , Factor de Transcripción AP-1 , Animales , Humanos , Ratones , Arritmias Cardíacas/genética , Fibrosis , Ratones Transgénicos
2.
Sci Adv ; 8(17): eabl5394, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486722

RESUMEN

Understanding peptide presentation by specific MHC alleles is fundamental for controlling physiological functions of T cells and harnessing them for therapeutic use. However, commonly used in silico predictions and mass spectroscopy have their limitations in precision, sensitivity, and throughput, particularly for MHC class II. Here, we present MEDi, a novel mammalian epitope display that allows an unbiased, affordable, high-resolution mapping of MHC peptide presentation capacity. Our platform provides a detailed picture by testing every antigen-derived peptide and is scalable to all the MHC II alleles. Given the urgent need to understand immune evasion for formulating effective responses to threats such as SARS-CoV-2, we provide a comprehensive analysis of the presentability of all SARS-CoV-2 peptides in the context of several HLA class II alleles. We show that several mutations arising in viral strains expanding globally resulted in reduced peptide presentability by multiple HLA class II alleles, while some increased it, suggesting alteration of MHC II presentation landscapes as a possible immune escape mechanism.


Asunto(s)
COVID-19 , Antígenos de Histocompatibilidad Clase II , Animales , Presentación de Antígeno , Linfocitos T CD4-Positivos , Antígenos de Histocompatibilidad Clase II/genética , Mamíferos , Péptidos , SARS-CoV-2
3.
Cell Rep ; 31(13): 107826, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610127

RESUMEN

Regulatory T cells (Tregs) represent a major population in the control of immune homeostasis and autoimmunity. Here we show that Fos-like 2 (Fosl2), a TCR-induced AP1 transcription factor, represses Treg development and controls autoimmunity. Mice overexpressing Fosl2 (Fosl2tg) indeed show a systemic inflammatory phenotype, with immune infiltrates in multiple organs. This phenotype is absent in Fosl2tg × Rag2-/- mice lacking T and B cells, and Fosl2 induces T cell-intrinsic reduction of Treg development that is responsible for the inflammatory phenotype. Fosl2tg T cells can transfer inflammation, which is suppressed by the co-delivery of Tregs, while Fosl2 deficiency in T cells reduces the severity of autoimmunity in the EAE model. We find that Fosl2 could affect expression of FoxP3 and other Treg development genes. Our data highlight the importance of AP1 transcription factors, in particular Fosl2, during T cell development to determine Treg differentiation and control autoimmunity.


Asunto(s)
Autoinmunidad , Antígeno 2 Relacionado con Fos/metabolismo , Inflamación/inmunología , Inflamación/patología , Linfocitos T Reguladores/inmunología , Factor de Transcripción AP-1/metabolismo , Animales , Médula Ósea/patología , Proteínas de Unión al ADN/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Factores de Transcripción Forkhead/metabolismo , Eliminación de Gen , Ratones Endogámicos C57BL , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo
4.
J Clin Invest ; 130(9): 4888-4905, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32603313

RESUMEN

TGF-ß is a master regulator of fibrosis, driving the differentiation of fibroblasts into apoptosis-resistant myofibroblasts and sustaining the production of extracellular matrix (ECM) components. Here, we identified the nuclear long noncoding RNA (lncRNA) H19X as a master regulator of TGF-ß-driven tissue fibrosis. H19X was consistently upregulated in a wide variety of human fibrotic tissues and diseases and was strongly induced by TGF-ß, particularly in fibroblasts and fibroblast-related cells. Functional experiments following H19X silencing revealed that H19X was an obligatory factor for TGF-ß-induced ECM synthesis as well as differentiation and survival of ECM-producing myofibroblasts. We showed that H19X regulates DDIT4L gene expression, specifically interacting with a region upstream of the DDIT4L gene and changing the chromatin accessibility of a DDIT4L enhancer. These events resulted in transcriptional repression of DDIT4L and, in turn, in increased collagen expression and fibrosis. Our results shed light on key effectors of TGF-ß-induced ECM remodeling and fibrosis.


Asunto(s)
Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Matriz Extracelular/genética , Matriz Extracelular/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda