Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Theor Appl Genet ; 127(3): 535-47, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24247236

RESUMEN

We present the first evidence for a QTL conditioning an adaptive trait in bulb onion, and the first linkage and population genetics analyses of candidate genes involved in photoperiod and vernalization physiology. Economic production of bulb onion (Allium cepa L.) requires adaptation to photoperiod and temperature such that a bulb is formed in the first year and a flowering umbel in the second. 'Bolting', or premature flowering before bulb maturation, is an undesirable trait strongly selected against by breeders during adaptation of germplasm. To identify genome regions associated with adaptive traits we conducted linkage mapping and population genetic analyses of candidate genes, and QTL analysis of bolting using a low-density linkage map. We performed tagged amplicon sequencing of ten candidate genes, including the FT-like gene family, in eight diverse populations to identify polymorphisms and seek evidence of differentiation. Low nucleotide diversity and negative estimates of Tajima's D were observed for most genes, consistent with purifying selection. Significant population differentiation was observed only in AcFT2 and AcSOC1. Selective genotyping in a large 'Nasik Red × CUDH2150' F2 family revealed genome regions on chromosomes 1, 3 and 6 associated (LOD > 3) with bolting. Validation genotyping of two F2 families grown in two environments confirmed that a QTL on chromosome 1, which we designate AcBlt1, consistently conditions bolting susceptibility in this cross. The chromosome 3 region, which coincides with a functionally characterised acid invertase, was not associated with bolting in other environments, but showed significant association with bulb sucrose content in this and other mapping pedigrees. These putative QTL and candidate genes were placed on the onion map, enabling future comparative studies of adaptive traits.


Asunto(s)
Genes de Plantas , Raíces de Plantas/genética , Mapeo Cromosómico , ADN de Plantas/genética , Ligamiento Genético , Genotipo , Cebollas/genética , Fenotipo , Sitios de Carácter Cuantitativo
2.
J Sci Food Agric ; 93(10): 2470-7, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23494930

RESUMEN

BACKGROUND: Non-structural carbohydrate (NSC; glucose, fructose, sucrose and fructan) composition of onions (Allium cepa L.) varies widely and is a key determinant of market usage. To analyse the physiology and genetics of onion carbohydrate metabolism and to enable selective breeding, an inexpensive, reliable and practicable sugar assay is required to phenotype large numbers of samples. RESULTS: A rapid, reliable and cost-effective microplate-based assay was developed for NSC analysis in onions and used to characterise variation in tissue hexose, sucrose and fructan content in open-pollinated breeding populations and in mapping populations developed from a wide onion cross. Sucrose measured in microplates employing maltase as a hydrolytic enzyme was in agreement with HPLC-PAD results. The method revealed significant variation in bulb fructan content within open-pollinated 'Pukekohe Longkeeper' breeding populations over a threefold range. Very wide segregation from 80 to 600 g kg(-1) in fructan content was observed in bulbs of F2 genetic mapping populations from the wide onion cross 'Nasik Red × CUDH2150'. CONCLUSION: The microplate enzymatic assay is a reliable and practicable method for onion sugar analysis for genetics, breeding and food technology. Open-pollinated onion populations may harbour extensive within-population variability in carbohydrate content, which may be quantified and exploited using this method. The phenotypic data obtained from genetic mapping populations show that the method is well suited to detailed genetic and physiological analysis.


Asunto(s)
Sacarosa en la Dieta/análisis , Pruebas de Enzimas/métodos , Fructanos/análisis , Variación Genética , Cebollas/química , Fenotipo , Raíces de Plantas/química , Cruzamiento , Mapeo Cromosómico , Cruzamientos Genéticos , Fructanos/genética , Cebollas/genética , Reproducibilidad de los Resultados , Sacarosa/análisis , alfa-Glucosidasas/metabolismo
3.
BMC Genomics ; 13: 637, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23157543

RESUMEN

BACKGROUND: Although modern sequencing technologies permit the ready detection of numerous DNA sequence variants in any organisms, converting such information to PCR-based genetic markers is hampered by a lack of simple, scalable tools. Onion is an example of an under-researched crop with a complex, heterozygous genome where genome-based research has previously been hindered by limited sequence resources and genetic markers. RESULTS: We report the development of generic tools for large-scale web-based PCR-based marker design in the Galaxy bioinformatics framework, and their application for development of next-generation genetics resources in a wide cross of bulb onion (Allium cepa L.). Transcriptome sequence resources were developed for the homozygous doubled-haploid bulb onion line 'CUDH2150' and the genetically distant Indian landrace 'Nasik Red', using 454™ sequencing of normalised cDNA libraries of leaf and shoot. Read mapping of 'Nasik Red' reads onto 'CUDH2150' assemblies revealed 16836 indel and SNP polymorphisms that were mined for portable PCR-based marker development. Tools for detection of restriction polymorphisms and primer set design were developed in BioPython and adapted for use in the Galaxy workflow environment, enabling large-scale and targeted assay design. Using PCR-based markers designed with these tools, a framework genetic linkage map of over 800cM spanning all chromosomes was developed in a subset of 93 F(2) progeny from a very large F(2) family developed from the 'Nasik Red' x 'CUDH2150' inter-cross. The utility of tools and genetic resources developed was tested by designing markers to transcription factor-like polymorphic sequences. Bin mapping these markers using a subset of 10 progeny confirmed the ability to place markers within 10 cM bins, enabling increased efficiency in marker assignment and targeted map refinement. The major genetic loci conditioning red bulb colour (R) and fructan content (Frc) were located on this map by QTL analysis. CONCLUSIONS: The generic tools developed for the Galaxy environment enable rapid development of sets of PCR assays targeting sequence variants identified from Illumina and 454 sequence data. They enable non-specialist users to validate and exploit large volumes of next-generation sequence data using basic equipment.


Asunto(s)
Cromosomas de las Plantas , Ligamiento Genético , Genoma de Planta , Cebollas/genética , Hojas de la Planta/genética , Brotes de la Planta/genética , Sitios de Carácter Cuantitativo , Programas Informáticos , Mapeo Cromosómico , Biblioteca de Genes , Marcadores Genéticos , Haploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Mutación INDEL , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Transcriptoma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda