Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Environ Manage ; 336: 117664, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921470

RESUMEN

The increase in energy and fertilizer consumption makes it necessary to develop sustainable alternatives for agriculture. Anaerobic digestion and digestates appeared to be suitable options. However, untreated digestates still have high water content and can increase greenhouse gas emissions during storage and land application. In this study, manure-derived digestate and solid fraction of digestate after separation were treated with a novel solar drying technology to reduce their water content, combined with acidification to reduce the gaseous emissions. The acidified digestate and acidified solid fraction of digestate recovered more nitrogen and ammonia nitrogen than their respective non-acidified products (1.5-1.3 times for TN; 14 times for TAN). Ammonia and methane emissions were reduced up to 94% and 72% respectively, compared to the non-acidified ones, while N2O increased more than 3 times. Dried digestate and dried acidified digestate can be labeled as NPK organic fertilizer regarding the European regulation, and the dried solid fraction and the improved dried acidified solid fraction can be labeled as N or P organic fertilizer. Moreover, plant tests showed that N concentrations in fresh lettuce leaves were within the EU limit with all products in all the cases. However, zinc concentration appeared to be a limitation in some of the products as their concentration exceeded the European legal limits.


Asunto(s)
Amoníaco , Estiércol , Fertilizantes , Agricultura , Nitrógeno/análisis , Concentración de Iones de Hidrógeno , Agua , Anaerobiosis
2.
Crit Rev Biotechnol ; 33(4): 448-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23110727

RESUMEN

The thermophilic anaerobic digestion (TAD) of sewage sludge has often been found to be less stable than mesophilic treatment. In comparison to mesophilic digesters, thermophilic reactors treating sludge are generally characterized by relatively high concentrations of volatile fatty acids (VFA) in the effluent along with poor effluent quality, indicating a lower level of process stability. However, reviewing the literature related to the procedure for obtaining a thermophilic inoculum, it seems that most of the problems associated with the instability and the accumulation of organic intermediates are the result of the manner in which the thermophilic sludge has been obtained. In this paper, the different options available for obtaining an anaerobic digester operating at thermophilic temperature (55°C) have been reviewed. In this light, rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤ 500 mg acetic acid L(-1) before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Archaea/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Calor
3.
Waste Manag ; 126: 719-727, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33878676

RESUMEN

Three catch crop species, ryegrass, forage rape and black oat, were grown between successive rotations of maize to reduce nitrogen leaching due to maize fertilization with digested dairy manure. Catch crops showed a high nutrient uptake, but with a wide range, depending on the year and the specie. Ensiling was shown to be a feasible storing method increasing catch crop methane production per hectare between 14-36% compared with fresh catch crop. In semi-continuous co-digestion experiments, methane production was increased between 35-48%, in comparison with anaerobic digestion of dairy manure alone. Catch crops were shown to be a good co-substrate, being a sustainable option to prevent leaching of nutrients to the environment, thus closing the loops from production to utilization by optimal recycling measures.


Asunto(s)
Biocombustibles , Estiércol , Anaerobiosis , Digestión , Metano , Nutrientes , Zea mays
4.
Sci Total Environ ; 649: 760-769, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30176486

RESUMEN

The effect of ammonia on methanogenic biomass from a full-scale agricultural digester treating nitrogen-rich materials was characterized in batch activity assays subjected to increasing concentrations of total ammonia N. Acetotrophic and methanogenic profiles displayed prolonged lag phases and reduced specific activity rates at 6.0 gN-TAN L-1, though identical methane yields were ultimately reached. These results agreed with the expression levels of selected genes from bacteria and methanogenic archaea (qPCR of 16S rRNA and mrcA cDNA transcripts). Compound-specific isotope analysis of biogas indicated that ammonia exposure was associated to a transition in methanogenic activity from acetotrophy at 1.0 gN-TAN L-1 to intermediate and complete hydrogenotrophy at 3.5 and 6.0 gN-TAN L-1. Such pattern matched the results of 16S-Illumina sequencing of genes and transcripts in that predominant methanogens shifted, along with increasing ammonia, from the obligate acetotroph Methanosaeta to the hydrogenotrophic Methanoculleus and the poorly understood methylotrophic Methanomassiliicoccus. The underlying bacterial community structure remained rather stable but, at 6.0 gN-TAN L-1, the expression level increased considerably for a number of ribotypes that are related to potentially syntrophic genera (e.g. Clostridium, Bellilinea, Longilinea, and Bacteroides). The predominance of hydrogenotrophy at high ammonia levels clearly points to the occurrence of the syntrophic acetate oxidation (SAO), but known SAO bacteria were only found in very low numbers. The potential role of the identified bacterial and archaeal taxa with a view on SAO and on stability of the anaerobic digestion process under ammonia stress has been discussed.


Asunto(s)
Agricultura , Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Biomasa , Residuos Industriales/análisis , Microbiota , Anaerobiosis , Archaea/genética , Proteínas Arqueales/análisis , Bacterias/genética , Reactores Biológicos , Genes Bacterianos , Oxidorreductasas/análisis , ARN Ribosómico 16S/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda