Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Ther ; 31(7): 2240-2256, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016577

RESUMEN

Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Estrés del Retículo Endoplásmico/genética , Ratones Transgénicos , Proteómica , Proteostasis/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética
2.
Alzheimers Dement ; 20(8): 5398-5410, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38934107

RESUMEN

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Hipocampo , Ketamina , Ratones Transgénicos , Plasticidad Neuronal , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Ratones , Potenciación a Largo Plazo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , ARN Mensajero/metabolismo , Memoria/efectos de los fármacos , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones Endogámicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Humanos
3.
Alzheimers Dement ; 19(6): 2595-2604, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36465055

RESUMEN

INTRODUCTION: Depression is frequent among older adults and is a risk factor for dementia. Identifying molecular links between depression and dementia is necessary to shed light on shared disease mechanisms. Reduced brain-derived neurotrophic factor (BDNF) and neuroinflammation are implicated in the pathophysiology of depression and dementia. The exercise-induced hormone, irisin, increases BDNF and improves cognition in animal models of Alzheimer's disease. Lipoxin A4 is a lipid mediator with anti-inflammatory activity. However, the roles of irisin and lipoxin A4 in depression remain to be determined. METHODS: In the present study, blood and CSF were collected from 61 elderly subjects, including individuals with and without cognitive impairment. Screening for symptoms of depression was performed using the 15-item Geriatric Depression Scale (GDS-15). RESULTS: CSF irisin and lipoxin A4 were positively correlated and reduced, along with a trend of BDNF reduction, in elderly individuals with depression, similar to previous observations in patients with dementia. DISCUSSION: Our findings provide novel insight into shared molecular signatures connecting depression and dementia.


Asunto(s)
Enfermedad de Alzheimer , Lipoxinas , Animales , Depresión/psicología , Factor Neurotrófico Derivado del Encéfalo , Fibronectinas , Brasil
4.
J Neurochem ; 151(2): 139-165, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31318452

RESUMEN

The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético/fisiología , Neuroquímica/educación , Estudiantes , Animales , Astrocitos/metabolismo , Congresos como Asunto/tendencias , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo
6.
J Biol Chem ; 292(18): 7327-7337, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28283575

RESUMEN

Brain accumulation of the amyloid-ß protein (Aß) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aß oligomers (AßOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AßOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AßOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AßOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AßO binding to hippocampal neurons and prevented AßO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AßOs in mice. The results indicate that Nrx2α and NL1 are targets of AßOs and that prevention of this interaction reduces the deleterious impact of AßOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AßOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Encéfalo/patología , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Ratas , Ratas Wistar , Sinapsis/genética
7.
J Neurosci ; 36(48): 12106-12116, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27903721

RESUMEN

Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aß oligomers (AßOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AßO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AßOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AßOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AßOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-ß oligomers (AßOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AßO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/inmunología , Encéfalo/inmunología , Depresión/inmunología , Inmunidad Innata/inmunología , Receptor Cross-Talk/inmunología , Serotonina/inmunología , Animales , Conducta Animal , Depresión/etiología , Masculino , Ratones , Ratones Endogámicos C3H , Microglía/inmunología , Factor de Necrosis Tumoral alfa/inmunología
9.
J Neurochem ; 134(6): 979-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237995

RESUMEN

Long-term potentiation (LTP) and long-term depression (LTD) are crucial for synaptic plasticity, and are driven by AMPA receptor (AMPAR) trafficking. Recent findings indicate that the ubiquitin-proteasome system, the main protein degradation machinery of the cell, plays a significant role in memory formation by regulating the induction and maintenance of LTP. Although previously suggested as a possibility, deubiquitination of mammalian AMPARs had not been demonstrated, and the search for an enzyme that mediates the processes continued. This Editorial Highlight discusses the relevance of a study published in the current issue of Journal of Neurochemistry, in which the authors Huo and collaborators now identified ubiquitin-specific peptidase 46 (USP46) as a specific AMPAR deubiquitinase.


Asunto(s)
Encéfalo/fisiología , Endopeptidasas/metabolismo , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Humanos
10.
J Neurosci ; 33(23): 9626-34, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23739959

RESUMEN

Brain accumulation of soluble amyloid-ß oligomers (AßOs) has been implicated in synapse failure and cognitive impairment in Alzheimer's disease (AD). However, whether and how oligomers of different sizes induce synapse dysfunction is a matter of controversy. Here, we report that low-molecular-weight (LMW) and high-molecular-weight (HMW) Aß oligomers differentially impact synapses and memory. A single intracerebroventricular injection of LMW AßOs (10 pmol) induced rapid and persistent cognitive impairment in mice. On the other hand, memory deficit induced by HMW AßOs (10 pmol) was found to be reversible. While memory impairment in LMW oligomer-injected mice was associated with decreased hippocampal synaptophysin and GluN2B immunoreactivities, synaptic pathology was not detected in the hippocampi of HMW oligomer-injected mice. On the other hand, HMW oligomers, but not LMW oligomers, induced oxidative stress in hippocampal neurons. Memantine rescued both neuronal oxidative stress and the transient memory impairment caused by HMW oligomers, but did not prevent the persistent cognitive deficit induced by LMW oligomers. Results establish that different Aß oligomer assemblies act in an orchestrated manner, inducing different pathologies and leading to synapse dysfunction. Furthermore, results suggest a mechanistic explanation for the limited efficacy of memantine in preventing memory loss in AD.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/tratamiento farmacológico , Memantina/farmacología , Fragmentos de Péptidos/farmacología , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Masculino , Ratones , Peso Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda