Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Circulation ; 102(1): 82-7, 2000 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-10880419

RESUMEN

BACKGROUND: Vitamin E is well known as an antioxidant, and numerous studies suggest that it has a preventive role in atherosclerosis, although the mechanism of action still remains unclear. METHODS AND RESULTS: The original aim of this study was to establish whether alpha-tocopherol (the most active form of vitamin E) acts at the earliest events on the cascade of atherosclerosis progression, that of oxidized LDL (oxLDL) uptake and foam-cell formation. We show here that the CD36 scavenger receptor (a specific receptor for oxLDL) is expressed in cultured human aortic smooth muscle cells (SMCs). Treatment of SMCs and HL-60 macrophages with alpha-tocopherol (50 micromol/L, a physiological concentration) downregulates CD36 expression by reducing its promoter activity. Furthermore, we find that alpha-tocopherol treatment of SMCs leads to a reduction of oxLDL uptake. CONCLUSIONS: This study indicates that CD36 is expressed in cultured human SMCs. In these cells, CD36 transports oxLDL into the cytosol. alpha-Tocopherol inhibits oxLDL uptake by a mechanism involving downregulation of CD36 mRNA and protein expression. Therefore, the beneficial effect of alpha-tocopherol against atherosclerosis can be explained, at least in part, by its effect of lowering the uptake of oxidized lipoproteins, with consequent reduction of foam cell formation.


Asunto(s)
Antígenos CD36/genética , Lipoproteínas LDL/farmacocinética , Músculo Liso Vascular/metabolismo , Vitamina E/farmacología , Aorta/citología , Arteriosclerosis/metabolismo , Antígenos CD36/metabolismo , Células Cultivadas , Citometría de Flujo , Colorantes Fluorescentes/farmacocinética , Regulación de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Microscopía Confocal , Músculo Liso Vascular/citología , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/análisis , Transfección
2.
FASEB J ; 15(13): 2314-25, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11689457

RESUMEN

Since the discovery of vitamin E in 1922, its deficiency has been associated with various disorders, particularly atherosclerosis, ischemic heart disease, and the development of different types of cancer. A neurological syndrome associated with vitamin E deficiency resembling Friedreich ataxia has also been described. Whereas epidemiological studies have indicated the role of vitamin E in preventing the progression of atherosclerosis and cancer, intervention trials have produced contradictory results, indicating strong protection in some cases and no significant effect in others. Although it is commonly believed that phenolic compounds like vitamin E exert only a protective role against free radical damage, antioxidant molecules can exert other biological functions. For instance, the antioxidant activity of 17-beta-estradiol is not related to its role in determining secondary sexual characters, and the antioxidant capacity of all-trans-retinal is distinguished from its role in rhodopsin and vision. Thus, it is not unusual that alpha-tocopherol (the most active form of vitamin E) has properties independent of its antioxidant/radical scavenging ability. The Roman god Janus, shown in ancient coins as having two faces in one body, inspired the designation of 'Janus molecules' for these substances. The new biochemical face of vitamin E was first described in 1991, with an inhibitory effect on cell proliferation and protein kinase C activity. After a decade, this nonantioxidant role of vitamin E is well established, as confirmed by authoritative studies of signal transduction and gene regulation. More recently, a tocopherol binding protein with possible receptor function has been discovered. Despite such important developments in understanding the molecular mechanism and the targets of vitamin E, its new Janus face is not fully elucidated. Greater knowledge of the molecular events related to vitamin E will help in selecting the parameters for clinical intervention studies such as population type, dose response effects, and possible synergism with other compounds.


Asunto(s)
Antioxidantes/farmacología , División Celular/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Vitamina E/farmacología , Animales , Arteriosclerosis/prevención & control , Ensayos Clínicos como Asunto , Humanos
3.
Biofactors ; 41(2): 121-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25809670

RESUMEN

Cyclic adenosine monophosphate (cAMP) modulates synaptic plasticity and memory and manipulation of the cAMP/protein kinase A/cAMP responsive element binding protein pathway significantly affects cognitive functions. Notably, cAMP can increase the expression of the amyloid precursor protein (APP), whose proteolytic processing gives rise to amyloid beta (Aß) peptides. Despite playing a pathogenic role in Alzheimer's disease, physiological concentrations of Aß are necessary for the cAMP-mediated regulation of long-term potentiation, supporting the existence of a novel cAMP/APP/Aß cascade with a crucial role in memory formation. However, the molecular mechanisms by which cAMP stimulates APP expression and Aß production remain unclear. Here, we investigated whether hnRNP-C and FMRP, two RNA-binding proteins largely involved in the expression of APP, are the cAMP effectors inducing the protein synthesis of APP. Using RNA immunoprecipitation and RNA-silencing approaches, we found that neither hnRNP-C nor FMRP is required for cAMP to stimulate APP and Aß production.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , AMP Cíclico/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Neuronas/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Animales , Línea Celular , Colforsina/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/antagonistas & inhibidores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/antagonistas & inhibidores , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
4.
Mol Aspects Med ; 24(6): 325-36, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14585303

RESUMEN

The function of vitamin E has been attributed to its capacity to protect the organism against the attack of free radicals by acting as a lipid based radical chain breaking molecule. More recently, alternative non-antioxidant functions of vitamin E have been proposed and in particular that of a "gene regulator". Effects of vitamin E have been observed at the level of mRNA or protein and could be consequent to regulation of gene transcription, mRNA stability, protein translation, protein stability and post-translational events. Given the high priority functions assigned to vitamin E, it can be speculated that it would be inefficient to consume it as a radical scavenger. Rather, it would be important to protect vitamin E through a network of cellular antioxidant defences, similarly to what occurs with proteins, nucleic acids and lipids.


Asunto(s)
Antioxidantes/metabolismo , alfa-Tocoferol/metabolismo , Enfermedades de los Animales/prevención & control , Animales , Arteriosclerosis/prevención & control , Ataxia/prevención & control , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Radicales Libres/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/prevención & control , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética , gamma-Tocoferol/metabolismo
5.
FEBS Lett ; 431(3): 465-7, 1998 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-9714565

RESUMEN

3-Aminobenzamide, a known inhibitor of poly-(ADP-ribose)-polymerase has been found in the cell line U-937 to inhibit protein kinase C at the same concentration as poly-(ADP-ribose)-polymerase. 3-Aminobenzamide was not able, however, to inhibit the isolated enzyme. An indirect mechanism of protein kinase C inhibition is proposed.


Asunto(s)
Benzamidas/farmacología , Inhibidores Enzimáticos/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Línea Celular , Relación Dosis-Respuesta a Droga , Inducción Enzimática , Humanos , Peróxido de Hidrógeno/farmacología , Proteína Quinasa C/biosíntesis , Proteínas Recombinantes/antagonistas & inhibidores , Acetato de Tetradecanoilforbol/farmacología
6.
Free Radic Biol Med ; 27(7-8): 729-37, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10515576

RESUMEN

Total protein kinase C (PKC) activity in human skin fibroblasts increases during in vivo aging as a function of the donor's age. During in vitro aging protein kinase C activity is also increased, as a function of cell passage number. Using PKC isoform specific antibodies, we demonstrate that the increase in total PKC activity is mainly due to the PKC a isoform. PKC alpha protein expression increased up to 8 fold during in vivo aging. Collagenase (MMP-1) gene transcription and protein expression also increased with age, concomitant with the increase in protein kinase C alpha. Furthermore, alpha-tocopherol, which inhibits protein kinase C activity, is able to diminish collagenase gene transcription without altering the level of its natural inhibitor, tissue inhibitor of metalloproteinase, TIMP-1. We propose that an aging program leads to increased protein kinase C alpha expression and activity. This event would induce collagenase overexpression followed by increased collagen degradation. Our in vitro experiments with skin fibroblasts suggest that alpha-tocopherol may protect against skin aging by decreasing the level of collagenase expression, which is induced by environmental insults and by aging.


Asunto(s)
Colagenasas/metabolismo , Isoenzimas/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Proteína Quinasa C/metabolismo , Vitamina E/farmacología , Adulto , Factores de Edad , Anciano , Células Cultivadas , Colágeno/metabolismo , Colagenasas/genética , Inhibidores Enzimáticos/farmacología , Femenino , Fibroblastos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Recién Nacido , Metaloproteinasa 1 de la Matriz/genética , Persona de Mediana Edad , Proteína Quinasa C-alfa , ARN Mensajero/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Transcripción Genética/efectos de los fármacos
7.
Prostaglandins Leukot Essent Fatty Acids ; 57(4-5): 507-14, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9430404

RESUMEN

The effects of alpha-tocopherol and beta-tocopherol have been studied in rat and human aortic smooth muscle cells. Alpha-tocopherol, but not beta-tocopherol, inhibited smooth muscle cell proliferation and protein kinase C in a dose-dependent manner, at concentrations ranging from 10 to 50 microM. Beta-tocopherol added simultaneously with alpha-tocopherol prevented both proliferation and protein kinase C inhibition. Protein kinase C inhibition was cell cycle-dependent and it was prevented by okadaic acid, a protein phosphatase inhibitor. Protein kinase C activity measured from aortas of cholesterol-fed rabbits was also inhibited by alpha-tocopherol. By using protein kinase C (PKC) isoform-specific inhibitors and immunoprecipitation reactions it was found that PKC-alpha was selectively inhibited by alpha-tocopherol. Further, an activation of protein phosphatase 2A by alpha-tocopherol was found, which caused PKC-alpha dephosphorylation and inhibition. Ultimately, this cascade of events at the level of cell signal transduction leads to the inhibition of smooth muscle cell proliferation.


Asunto(s)
División Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Vitamina E/farmacología , Animales , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/efectos de los fármacos , Isoenzimas/metabolismo , Masculino , Músculo Liso Vascular/citología , Fosfoproteínas Fosfatasas/efectos de los fármacos , Fosfoproteínas Fosfatasas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteína Quinasa C-alfa , Proteína Fosfatasa 2 , Conejos , Ratas
8.
Diabetes Res Clin Pract ; 45(2-3): 191-8, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10588372

RESUMEN

Oxidant stress is associated with diminution of antioxidant molecules, such as alpha-tocopherol. Alpha-tocopherol specifically decreases, in a concentration dependent way, the proliferation of vascular smooth muscle cells. At the same concentrations (10-50 microM) it induces inhibition of protein kinase C (PKC) activity. The latter event is not due to a decrease in PKC level or to alpha-tocopherol binding to PKC, but it results from increase of protein phosphatase 2A1 activity. In vitro data, as well as at a cellular level, demonstrates that protein phosphatase 2A1 is activated, in its trimeric structure--but not as a dimer by alpha-tocopherol. This activation is followed by PKC-alpha dephosphorylation. The activation of protein phosphatase 2A1 and deactivation of PKC-alpha affect the AP1 transcription factor, resulting in a change in the composition and the binding of this factor to DNA. By transfecting smooth muscle cell with a construct containing three TRE (TPA responsive elements), the promoter thymidine kinase and the reporter gene chloramphenicol-acetyl-transferase a modulation of gene expression by alpha-tocopherol is observed. Beta-tocopherol does not cause any of the responses observed with alpha-tocopherol and R,R,R-alpha-tocopherol is twice as potent as all-rac-alpha-tocopherol. When added together, beta-tocopherol prevents the effects of alpha-tocopherol indicating that the mechanism involved is not related to the radical-scavenging properties of these two molecules, which are essentially equal. By differential display analysis it has been found that several genes of smooth muscle cells are differentially transcribed in the presence of alpha-tocopherol but not beta-tocopherol. In particular, the gene of alpha-tropomyosin shows a transient enhancement of transcription as a function of the cell cycle time. Alpha-tropomyosin translation is also increased by alpha-tocopherol and not by beta-tocopherol. Because no changes of mRNA stability can be observed in the presence of alpha-tocopherol, the data supports the conclusion of a transcriptional control exerted by alpha-tocopherol on alpha-tropomyosin. Generally, the data strongly suggests the existence of a ligand/receptor type of mechanism at the basis of alpha-tocopherol action. It is concluded that an oxidative stress-induced diminution of alpha-tocopherol in smooth muscle cell activates a reaction cascade leading to changes in gene expression and increase in cell proliferation by a non-antioxidant mechanism.


Asunto(s)
Músculo Liso Vascular/fisiología , Estrés Oxidativo/fisiología , Proteína Quinasa C/metabolismo , Vitamina E/farmacología , Animales , Aorta Torácica , Línea Celular , Cloranfenicol O-Acetiltransferasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Estrés Oxidativo/efectos de los fármacos , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Conejos , Proteínas Recombinantes de Fusión/biosíntesis , Acetato de Tetradecanoilforbol/farmacología , Timidina Quinasa/genética , Transcripción Genética , Transfección , Tropomiosina/genética , Vitamina E/metabolismo
9.
Chem Biol Interact ; 100(2): 155-63, 1996 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-8646788

RESUMEN

Isolated rat hepatocytes were exposed to increasing concentrations of ethanol. During exposure of cells to ethanol a moderate but significant modification in the level of hepatic PKC c-isoforms has been observed. The ethanol-induced effect on liver protein kinase C was reversed by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, indicating that the conversion of ethanol to acetaldehyde may be involved in the enzyme inactivation. The involvement of the alcohol metabolite in PKC modifications was confirmed by the exposure of hepatocytes or partially purified liver enzyme to acetaldehyde concentrations of pathological interest.


Asunto(s)
Etanol/metabolismo , Hígado/enzimología , Proteína Quinasa C/antagonistas & inhibidores , Acetaldehído/farmacología , Alcohol Deshidrogenasa/antagonistas & inhibidores , Alcohol Deshidrogenasa/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Etanol/farmacología , Fomepizol , Immunoblotting , Isoenzimas/antagonistas & inhibidores , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Pirazoles/farmacología , Ratas , Ratas Wistar
10.
Biofactors ; 11(3): 189-200, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10875306

RESUMEN

Atherosclerosis and its complications, such as coronary heart disease, heart infarction and stroke, are the leading causes of death in the developed world. High blood pressure, diabetes, smoking and a diet high in cholesterol and lipids clearly increase the likelihood of premature atherosclerosis, albeit other factors, such as the individual genetic makeup, may play an additional role. During atherosclerosis, uncontrolled cholesterol and lipid accumulation in macrophages and smooth muscle cells leads to foam cell formation and to the progression of the atherosclerotic plaque. This review will focus on foam cell formation within the atherosclerotic lesion, the involvement of the scavenger receptor genes in this process, and the possibility to interfere with scavenger receptor function to reduce the progression of atherosclerosis. To date, the regulatory mechanisms for the expression of scavenger receptor genes and their role in atherosclerosis are not well characterized. Knowledge on this subject could lead to a better understanding of the process, prevention and therapy of this disease.


Asunto(s)
Arteriosclerosis/fisiopatología , Macrófagos/fisiología , Proteínas de la Membrana , Receptores Inmunológicos/fisiología , Receptores de Lipoproteína , Animales , Colesterol/metabolismo , Células Espumosas/fisiología , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Receptores Inmunológicos/genética , Receptores Depuradores , Receptores Depuradores de Clase B
11.
Biofactors ; 7(1-2): 3-14, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9523023

RESUMEN

Rat and human vascular smooth muscle cell proliferation is specifically sensitive to alpha-tocopherol, but not beta-tocopherol. The former, but not the latter, is capable of limiting proliferation and inhibiting protein kinase C activity in a dose-dependent manner. The phenomenon occurs at concentrations in the range 10-50 microM. beta-tocopherol addition together with alpha-tocopherol, prevents both cell growth and protein kinase C inhibition. alpha-tocopherol increases de novo synthesis of protein kinase C molecules. The enzyme specific activity, however, is diminished, due to a decreased phosphorylation of protein kinase C, occurring in the presence of alpha-tocopherol. Experiments with protein kinase C isoform-specific inhibitors and precipitating antibodies show that the only isoform affected by alpha-tocopherol is protein kinase C-alpha. The effect of alpha-tocopherol is prevented by okadaic acid indicating a phosphatase of the PP2A type as responsible for protein kinase C-alpha dephosphorylation produced in the presence of alpha-tocopherol. At a gene level alpha-tocopherol but not beta-tocopherol induces a transient activation of alpha-tropomyosin gene transcription and protein expression. It is proposed that, by inhibiting protein kinase C activity via an activation of a phosphatase PP2A, alpha-tocopherol controls smooth muscle cell proliferation through changes in gene expression.


Asunto(s)
División Celular/efectos de los fármacos , Músculo Liso/citología , Vitamina E/farmacología , Línea Celular , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas de Inmunoadsorción , Isoenzimas/antagonistas & inhibidores , Masculino , Músculo Liso Vascular/citología , Fosforilación , Neoplasias de la Próstata , Proteína Quinasa C/antagonistas & inhibidores , Tropomiosina/genética , Células Tumorales Cultivadas
12.
Int J Vitam Nutr Res ; 67(5): 343-9, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9350476

RESUMEN

alpha-Tocopherol but not beta-tocopherol, activates protein phosphatase 2A, decreases protein kinase C activity and attenuates smooth muscle cell proliferation at physiological concentrations. beta-Tocopherol prevents the effects of alpha-tocopherol. Inhibition of protein kinase C alpha, but not of the other isoforms, by the inhibitor Gö6976 prevents the effect of alpha-tocopherol. Protein kinase C alpha, immunoprecipitated from alpha-tocopherol treated cells, is less phosphorylated and inactive. It is proposed that the specific activation of protein phosphatase 2A by alpha-tocopherol results in dephosphorylation and inactivation of protein kinase C alpha. Finally, this cascade of events leads to smooth muscle cell proliferation inhibition.


Asunto(s)
Isoenzimas/metabolismo , Músculo Liso/enzimología , Fosfoproteínas Fosfatasas/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Vitamina E/farmacología , Animales , División Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Isoenzimas/antagonistas & inhibidores , Masculino , Músculo Liso/citología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Concentración Osmolar , Fosfoproteínas Fosfatasas/efectos de los fármacos , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C-alfa , Proteína Fosfatasa 2 , Conejos , Acetato de Tetradecanoilforbol/farmacología
13.
Neuropharmacology ; 77: 120-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24067928

RESUMEN

Phosphodiesterase type 4 inhibitors (PDE4-Is) have received increasing attention as cognition-enhancers and putative treatment strategies for Alzheimer's disease (AD). By preventing cAMP breakdown, PDE4-Is can enhance intracellular signal transduction and increase the phosphorylation of cAMP response element-binding protein (CREB) and transcription of proteins related to synaptic plasticity and associated memory formation. Unfortunately, clinical development of PDE4-Is has been seriously hampered by emetic side effects. The new isoform-specific PDE4D-I, GEBR-7b, has shown to have beneficial effects on memory at non-emetic doses. The aim of the current study was to investigate chronic cognition-enhancing effects of GEBR-7b in a mouse model of AD. To this extent, 5-month-old (5M) APPswe/PS1dE9 mice received daily subcutaneous injections with GEBR-7b (0.001 mg/kg) or vehicle for a period of 3 weeks, and were tested on affective and cognitive behavior at 7M. We demonstrated a cognition-enhancing potential in APPswe/PS1dE9 mice as their spatial memory function at 7M in the object location test was improved by prior GEBR-7b treatment. APPswe/PS1dE9 mice displayed lower levels of CREB phosphorylation, which remained unaltered after chronic GEBR-7b treatment, and higher levels of tau in the hippocampus. Hippocampal brain-derived neurotrophic factor levels and synaptic densities were not different between experimental groups and no effects were observed on hippocampal GSK3ß and tau phosphorylation or Aß levels. In conclusion, GEBR-7b can enhance spatial memory function in the APPswe/PS1dE9 mouse model of AD. Although the underlying mechanisms of its cognition-enhancing potential remain to be elucidated, PDE4D inhibition appears an interesting novel therapeutic option for cognitive deficits in AD.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Hipocampo/efectos de los fármacos , Iminas/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Morfolinas/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas/metabolismo , Hipocampo/metabolismo , Iminas/uso terapéutico , Proteínas de la Membrana/metabolismo , Ratones , Morfolinas/uso terapéutico , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Fosforilación/efectos de los fármacos
14.
Cell Death Dis ; 4: e589, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23579276

RESUMEN

Neuroblastoma (NB) is the second most common solid pediatric tumor and is characterized by clinical and biological heterogeneity, and stage-IV of the disease represents 50% of all cases. Considering the limited success of present chemotherapy treatment, it has become necessary to find new and effective therapies. In this context, our approach consists of identifying and targeting key molecular pathways associated with NB chemoresistance. This study has been carried out on three stage-IV NB cell lines with different status of MYCN amplification. Cells were exposed to a standard chemotherapy agent, namely etoposide, either alone or in combination with particular drugs, which target intracellular signaling pathways. Etoposide alone induced a concentration-dependent reduction of cell viability and, at very high doses, totally counteracted cell tumorigenicity and neurosphere formation. In addition, etoposide activated p38 mitogen-activated protein kinase (MAPK), AKT and c-Jun N-terminal kinase. Pre-treatment with SB203580, a p38MAPK inhibitor, dramatically sensibilized NB cells to etoposide, strongly reducing the dosage needed to inhibit tumorigenicity and neurosphere formation. Importantly, SB203580-etoposide cotreatment also reduced cell migration and invasion by affecting cyclooxygenase-2, intercellular adhesion molecule-1, C-X-C chemokine receptor-4 and matrix metalloprotease-9. Collectively, our results suggest that p38MAPK inhibition, in combination with standard chemotherapy, could represent an effective strategy to counteract NB resistance in stage-IV patients.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Etopósido/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Apoptosis/genética , Diferenciación Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/economía , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estadificación de Neoplasias , Neoplasias del Sistema Nervioso/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Br J Pharmacol ; 164(8): 2054-63, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21649644

RESUMEN

BACKGROUND AND PURPOSE: Strategies designed to enhance cerebral cAMP have been proposed as symptomatic treatments to counteract cognitive deficits. However, pharmacological therapies aimed at reducing PDE4, the main class of cAMP catabolizing enzymes in the brain, produce severe emetic side effects. We have recently synthesized a 3-cyclopentyloxy-4-methoxybenzaldehyde derivative, structurally related to rolipram, and endowed with selective PDE4D inhibitory activity. The aim of the present study was to investigate the effect of the new drug, namely GEBR-7b, on memory performance, nausea, hippocampal cAMP and amyloid-ß (Aß) levels. EXPERIMENTAL APPROACH: To measure memory performance, we performed object recognition tests on rats and mice treated with GEBR-7b or rolipram. The emetic potential of the drug, again compared with rolipram, was evaluated in rats using the taste reactivity test and in mice using the xylazine/ketamine anaesthesia test. Extracellular hippocampal cAMP was evaluated by intracerebral microdialysis in freely moving rats. Levels of soluble Aß peptides were measured in hippocampal tissues and cultured N2a cells by elisa. KEY RESULTS: GEBR-7b increased hippocampal cAMP, did not influence Aß levels and improved spatial, as well as object memory performance in the object recognition tests. The effect of GEBR-7b on memory was 3 to 10 times more potent than that of rolipram, and its effective doses had no effect on surrogate measures of emesis in rodents. CONCLUSION AND IMPLICATIONS: Our results demonstrate that GEBR-7b enhances memory functions at doses that do not cause emesis-like behaviour in rodents, thus offering a promising pharmacological perspective for the treatment of memory impairment.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/efectos de los fármacos , Iminas/farmacología , Memoria/efectos de los fármacos , Morfolinas/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Animales , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ketamina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Xilazina/administración & dosificación
16.
Arch Biochem Biophys ; 355(2): 197-200, 1998 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9675027

RESUMEN

The sensitivity of PKC alpha to two protein phosphatases (PP1 and PP2A) has been studied. The results show that both phosphatases reversibly inhibit PKC alpha activity suggesting an effect at PKC autophosphorylation sites and not at transphosphorylation sites. Moreover, PP1 has been found at low concentration to activate PKC alpha implying the existence of an inhibitory phosphorylation site. Further, PKC alpha has been shown to phosphorylate PP2A at its regulatory subunit B.


Asunto(s)
Isoenzimas/genética , Isoenzimas/metabolismo , Fosfoproteínas Fosfatasas/farmacología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Recombinantes/metabolismo , Adenosina Trifosfato/metabolismo , Activación Enzimática/efectos de los fármacos , Isoenzimas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C-alfa , Proteína Fosfatasa 1 , Proteína Fosfatasa 2 , Proteínas Recombinantes/efectos de los fármacos
17.
IUBMB Life ; 52(1-2): 71-6, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11795598

RESUMEN

Recent research on alpha-tocopherol has revealed specific cellular functions of this compound belonging to the vitamin E family. Alpha-tocopherol can act as a radical scavenger, as a pro-oxidant, as an anti-alkylation agent and, most important, by mechanisms that are independent of the above properties. To the last group belong protein kinase C and 5-lipoxygenase inhibition at post-translational level, as well as alpha-tocopherol activation of protein phosphatase 2A and diacylglycerol kinase. Furthermore, at transcriptional level, several genes (CD36, alpha-TTP, alpha-tropomyosin, and collagenase) are modulated by alpha-tocopherol. These effects result in inhibition of smooth muscle cell proliferation, platelet aggregation, and monocyte adhesion and may be related to the alleged protection of atherosclerosis by vitamin E. On the other side, epidemiological and intervention studies have shown some inconsistent results. Rather than disregarding vitamin E as a means to protect against atherosclerosis progression, it would be wiser to better design clinical trials based on current knowledge of the biological properties of the molecule.


Asunto(s)
Depuradores de Radicales Libres/metabolismo , Radicales Libres/metabolismo , Vitamina E/metabolismo , Animales , Arteriosclerosis/complicaciones , Arteriosclerosis/metabolismo , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/metabolismo , Transcripción Genética , Deficiencia de Vitamina E/complicaciones , Deficiencia de Vitamina E/metabolismo , alfa-Tocoferol/metabolismo
18.
IUBMB Life ; 49(5): 397-403, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10902571

RESUMEN

Lipoproteins modified by oxidation, glycation, alkylation, and nitration are generated by oxidative stress during inflammation, diabetes, and inadequate supply of dietary antioxidants. A family of genes, the scavenger receptors, recognizes and internalizes modified lipoproteins, making them susceptible to degradation. Clearance of modified lipoproteins by scavenger receptors occurs mainly in macrophages, dendritic cells, and Kupffer cells of the liver. However, scavenger receptor expression also occurs in other cells, such as endothelial cells, aortic smooth muscle cells, neuronal cells, and keratinocytes. Thus, the local clearance of oxidized low-density lipoprotein and the resolution of inflammatory processes may rely in part on the expression of scavenger receptors in "nonprofessional" phagocytes. Uptake of oxidized low-density lipoprotein, without an efficient machinery to degrade them and uncontrolled expression of scavenger receptors, may lead to cellular deregulation, apoptosis, and formation of foam cells. Diseases accompanied by oxidation of lipoproteins, such as atherosclerosis, Alzheimer disease, glomerulosclerosis, ataxia with vitamin E deficiency, and possibly age-dependent lipofuscin deposition, may share a common pathogenetic feature. This review will focus on foam cell formation, mainly within the atherosclerotic lesion, and the possible involvement of aberrant regulation of the scavenger receptor genes. To date, the regulatory mechanisms at the basis of scavenger receptor gene expression and their roles in atherosclerosis and other diseases are not well established. Knowledge on this subject could lead to a better understanding of the pathogenesis, prevention, and therapy of these diseases.


Asunto(s)
Lipoproteínas LDL/metabolismo , Proteínas de la Membrana , Receptores Inmunológicos/metabolismo , Receptores de Lipoproteína , Animales , Aorta/metabolismo , Apoptosis , Arteriosclerosis/metabolismo , Arteriosclerosis/patología , Adhesión Celular , Células Dendríticas/metabolismo , Endotelio Vascular/metabolismo , Humanos , Queratinocitos/metabolismo , Ligandos , Macrófagos/metabolismo , Modelos Biológicos , Músculo Liso Vascular/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Fagocitosis , Receptores Depuradores , Receptores Depuradores de Clase B , Transducción de Señal
19.
J Nutr ; 131(2): 378S-81S, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11160565

RESUMEN

Most tocopherols and tocotrienols, with the exception of alpha-tocopherol, are not retained by humans. This suggests that alpha-tocopherol is recognized uniquely; therefore, it may exert an exclusive function. alpha-Tocopherol possesses distinct properties that are independent of its prooxidant, antioxidant or radical-scavenging ability. alpha-Tocopherol specifically inhibits protein kinase C, the growth of certain cells and the transcription of the CD36 and collagenase genes. Activation events have also been seen on the protein phosphatase 2A (PP(2)A) and on the expression of other genes (alpha-tropomyosin and connective tissue growth factor). Neither ss-tocopherol nor probucol possessed the same specialty functions as alpha-tocopherol. Recently, we isolated a new ubiquitous cytosolic alpha-tocopherol binding protein (TAP). Its motifs suggest that it is a member of the hydrophobic ligand-binding protein family (CRAL-TRIO). TAP may also be involved in the regulation of cellular alpha-tocopherol concentration and alpha-tocopherol-mediated signaling.


Asunto(s)
Músculo Liso/efectos de los fármacos , Vitamina E/farmacología , Vitamina E/fisiología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Músculo Liso/fisiología , Fosfoproteínas Fosfatasas , Proteína Quinasa C/antagonistas & inhibidores , Proteína Fosfatasa 2 , Procesamiento Proteico-Postraduccional , Transcripción Genética/efectos de los fármacos
20.
Biochem J ; 334 ( Pt 1): 243-9, 1998 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9693126

RESUMEN

The mechanism of protein kinase C (PKC) regulation by alpha-tocopherol has been investigated in smooth-muscle cells. Treatment of rat aortic A7r5 smooth-muscle cells with alpha-tocopherol resulted in a time- and dose-dependent inhibition of PKC. The inhibition was not related to a direct interaction of alpha-tocopherol with the enzyme nor with a diminution of its expression. Western analysis demonstrated the presence of PKCalpha, beta, delta, epsilon, zeta and micro isoforms in these cells. Autophosphorylation and kinase activities of the different isoforms have shown that only PKCalpha was inhibited by alpha-tocopherol. The inhibitory effects were not mimicked by beta-tocopherol, an analogue of alpha-tocopherol with similar antioxidant properties. The inhibition of PKCalpha by alpha-tocopherol has been found to be associated with its dephosphorylation. Moreover the finding of an activation of protein phosphatase type 2A in vitro by alpha-tocopherol suggests that this enzyme might be responsible for the observed dephosphorylation and subsequent deactivation of PKCalpha. It is therefore proposed that PKCalpha inhibition by alpha-tocopherol is linked to the activation of a protein phosphatase, which in turn dephosphorylates PKCalpha and inhibits its activity.


Asunto(s)
Isoenzimas/antagonistas & inhibidores , Músculo Liso Vascular/enzimología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Vitamina E/farmacología , Animales , Aorta , Línea Celular , Isoenzimas/metabolismo , Cinética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Quinasa C beta , Proteína Quinasa C-alfa , Proteína Quinasa C-delta , Proteína Quinasa C-epsilon , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda