Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Am J Bot ; 107(1): 56-65, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31889308

RESUMEN

PREMISE: The southern Florida Everglades landscape sustains wetlands of national and international importance. Sawgrass (Cladium jamaicense), the dominant macrophyte in the Everglades, has two phenotypes that vary in size and density between Everglades marl prairies and peat marshes. Marl prairies have recently been hypothesized to be a newly formed habitat developed after European colonization as a result of landscape-scale hydrologic modifications, implying that sawgrass marl phenotypes developed in response to the marl habitat. We examined whether sawgrass wetland phenotypes are plastic responses to marl and peat soils. METHODS: In a common-mesocosm experiment, seedlings from a single Everglades population were grown outdoors in field-collected marl or peat soils. Growth and morphology of plants were measured over 14 mo, while soil and leaf total nitrogen, total phosphorus, total carbon, and plant biomass and biomass allocation were determined in a final harvest. RESULTS: Sawgrass plant morphology diverged in marl vs. peat soils, and variations in morphology and density of mesocosm-grown plants resembled differences seen in sawgrass plants growing in marl and peat habitats in Everglades wetlands. Additionally, sawgrass growing in marl made abundant dauciform roots, while dauciform root production of sawgrass growing in peat was correlated with soil total phosphorus. CONCLUSIONS: Sawgrass from a single population grown in marl or peat soils can mimic sawgrass phenotypes associated with marl vs. peat habitats. This plasticity is consistent with the hypothesis that Everglades marl prairies are relatively new habitats that support plant communities assembled after European colonization and subsequent landscape modifications.


Asunto(s)
Suelo , Humedales , Ecosistema , Florida , Pradera , Fenotipo
2.
Sensors (Basel) ; 18(3)2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29522476

RESUMEN

Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species' habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

3.
Oecologia ; 184(3): 729-737, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28664266

RESUMEN

Sea level rise (SLR) and land-use change are working together to change coastal communities around the world. Along Florida's coast, SLR and large-scale drying are increasing groundwater salinity, resulting in halophytic (salt-tolerant) species colonizing glycophytic (salt-intolerant) communities. We hypothesized that halophytes can contribute to increased soil salinity as they move into glycophyte communities, making soils more saline than SLR or drying alone. We tested our hypothesis with a replacement-series greenhouse experiment with halophyte/glycophyte ratios of 0:4, 1:3, 2:2, 3:1, 4:0, mimicking halophyte movement into glycophyte communities. We subjected replicates to 0, 26, and 38‰ salinity for one, one, and three months, respectively, taking soil salinity and stomatal conductance measurements at the end of each treatment period. Our results showed that soil salinity increased as halophyte/glycophyte ratio increased. Either osmotic or ionic stress caused decreases in glycophyte biomass, resulting in less per-plant transpiration as compared to halophytes. At 38‰ groundwater, soil salinity increased as halophyte density increased, making conditions more conducive to further halophyte establishment. This study suggests that coastal plant community turnover may occur faster than would be predicted from SLR and anthropogenic disturbance alone.


Asunto(s)
Salinidad , Plantas Tolerantes a la Sal , Suelo , Adaptación Fisiológica , Florida , Océanos y Mares , Cloruro de Sodio
4.
J Environ Qual ; 42(2): 562-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673849

RESUMEN

The effects of water depth and flow on marsh plant litter decomposition and soil chemistry were measured in the Loxahatchee Impoundment Landscape Assessment (LILA) facility (Boynton Beach, FL), where macrocosms mimic Everglades ridge-and-slough landscape features. Experiments were conducted in two macrocosms that differed in flow but had ridge, shallow slough, and deep slough habitats that differed in water depth. Decomposition of three common Everglades species, Crantz, Torr., and Aiton, were measured using litter bags incubated in the macrocosms under both wet and dry conditions. Litter decomposition was similar among flow treatments and habitats but differed by species and between wet and dry conditions. Decomposition rates from fastest to slowest were > > litter had more total P than the other two species, confirming the importance of P availability in controlling decomposition in the Everglades. Planted species had no effect on soil nutrient content during the ~4 yr of plant growth. Average water velocities of ~0.5 cm s attained in the flow treatment had no effect on decomposition or soil chemistry. The plant species used in this study are major contributors to Everglades' organic soils, so their decomposition rates can be used to parameterize models for how restoration manipulations will affect soil-building processes and to predict the temporal sequence of landscape responses to these manipulations. The results suggest that longer periods and flows greater than studied here may be necessary to see restoration effects on soil building processes.


Asunto(s)
Ecosistema , Humedales , Ambiente , Hojas de la Planta/química , Plantas , Suelo
5.
Am J Bot ; 99(12): 1903-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23204486

RESUMEN

PREMISE OF THE STUDY: Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • METHODS: Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • KEY RESULTS: Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • CONCLUSIONS: Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.


Asunto(s)
Convección , Gases/metabolismo , Nymphaea/anatomía & histología , Nymphaea/metabolismo , Florida , Modelos Biológicos , Nymphaea/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Reología , Agua , Humedales
6.
Ecology ; 100(5): e02672, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30942486

RESUMEN

Saltwater intrusion and salinization of coastal wetlands around the world are becoming a pressing issue due to sea level rise. Here, we assessed how a freshwater coastal wetland ecosystem responds to saltwater intrusion. In wetland mesocosms, we continuously exposed Cladium jamaicense Crantz (sawgrass) plants and their peat soil collected from a freshwater marsh to two factors associated with saltwater intrusion in karstic ecosystems: elevated loading of salinity and phosphorus (P) inputs. We took repeated measures using a 2 × 2 factorial experimental design (n = 6) with treatments composed of elevated salinity (~9 ppt), P loading (14.66 µmol P/d), or a combination of both. We measured changes in water physicochemistry, ecosystem productivity, and plant biomass change over two years to assess monthly and two-year responses to saltwater intrusion. In the short-term, plants exhibited positive growth responses with simulated saltwater intrusion (salinity + P), driven by increased P availability. Despite relatively high salinity levels for a freshwater marsh (~9 ppt), gross ecosystem productivity (GEP), net ecosystem productivity (NEP), and aboveground biomass were significantly higher in the elevated salinity + P treated monoliths compared to the freshwater controls. Salinity stress became evident after extended exposure. Although still higher than freshwater controls, GEP and NEP were significantly lower in the elevated salinity + P treatment than the +P treatment after two years. However, elevated salinity decreased live root biomass regardless of whether P was added. Our results suggest that saltwater intrusion into karstic freshwater wetlands may initially act as a subsidy by stimulating aboveground primary productivity of marsh plants. However, chronic exposure to elevated salinity results in plant stress, negatively impacting belowground peat soil structure and stability through a reduction in plant roots.


Asunto(s)
Suelo , Humedales , Ecosistema , Agua Dulce , Fósforo , Salinidad , Estrés Salino
7.
J Environ Qual ; 34(2): 717-23, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15758124

RESUMEN

Few studies have examined long-term ecological effects of sustained low-level nutrient enhancement on wetland biota. To determine sustained effects of phosphorus (P) addition on Everglades marshes we added P at low levels (5, 15, and 30 microg L(-1) above ambient) for 5 yr to triplicate 100-m flow-through channels in pristine marsh. A cascade of ecological responses occurred in similar sequence among treatments. Although the rate of change increased with dosing level, treatments converged to similar enriched endpoints, characterized most notably by a doubling of plant biomass and elimination of native, calcareous periphyton mats. The full sequence of biological changes occurred without an increase in water total P concentration, which remained near ambient levels until Year 5. This study indicates that Everglades marshes have a near-zero assimilative capacity for P without a state change, that ecosystem responses to enrichment accumulate over time, and that downstream P transport mainly occurs through biota rather than the water column.


Asunto(s)
Ecosistema , Cadena Alimentaria , Fósforo/análisis , Fósforo/metabolismo , Contaminantes del Agua/análisis , Contaminantes del Agua/metabolismo , Animales , Florida , Agua/química , Abastecimiento de Agua
8.
New Phytol ; 108(2): 125-148, 1988 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33874162

RESUMEN

The isoetid life-form was originally defined on morphological grounds; subsequent physiological investigations showed that all of the isoetids examined took up a large fraction of the inorganic C fixed in their leaves from the root medium under natural conditions, and that some of them carried out much of their assimilation of inorganic C via a CAM-like mechanism. Root-dominated uptake of inorganic C appeared to be unique to, and ubiquitous in, the isoetids. I However, a large capacity for CAM-like metabolism in submerged vascular plants is not universal in isoetids, nor is it restricted to this life-form, being also found in Crassulaa aquatica. The work described here shows that submerged specimens of the North American Eriocaulon decangulare have a high fraction of their dry weight in the root system, a trait characteristic of isoetids but uncommon in other submerged vascular plants. E. decangulare has vesicular-arbuscular mycorrhizas, as do other flowering plant isoetids hut not, generally, submerged Isoetes spp. Under conditions of natural supply of inorganic C, E. decangulare, like other isoetids, takes up most of its inorganic C through its roots. Uptake of inorganic C by both roots and shoots involves CO2 rather than HCO3 : photosynthesis at high external pH values does not exceed the rate of uncatalysed HCO3 - to CO2 conversion in the medium and there is no detectable extracellular carbonic anhydrase activity. Measurements of titratable acidity and of malate content of leaves sampled at dawn and at dusk showed that E. decangulare, growing and tested under either emersed or submersed conditions, did not exhibit CAM-like behaviour. CAM was also absent from three non-isoetid aquatic macrophytes (Amphibolic antarctica, Eeklonia radiata and Vallisneria spiralis) which were examined. E. decangulare thus resembles all other isoetids tested in acquiring much of its inorganic C via the root system. E. decangulare also resembles most of the isoetids which are not members of the Isoetaceae (e.g.) E. septangulare, Lobelia dortmanna and Subularia aquatica) but differs from submerged Isoetaceae and Littorella uniflora in lacking CAM. The ecological significance of uptake of CO2 via the roots and, where it occurs, of CAM in isoetids may be related to either inorganic C or, via improved N use efficiency, inorganic C as a limiting resource. The isoetid life-forms has evolved independently in at last five different families of vascular plants; it probably derived fairly immediately from terrestrial or amphibious ancestors with a similar rosette form. Emergent Isoetaceae with acquisition of CO2 via roots and CAM probably evolved from submerged isoetids. CONTENTS Summary 123 I. Introduction 126 II. Material and Methods 127 III. Results and Discussion 129 IV. Conclusions 142 Acknowledgements 142 References 143.

9.
Am J Bot ; 97(11): 1761-71, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21616815

RESUMEN

PREMISE OF THE STUDY: Species in the aquatic genus Nymphoides have inflorescences that appear to arise from the petioles of floating leaves. The inflorescence-floating leaf complex can produce vegetative propagules and/or additional inflorescences and leaves. We analyzed the morphology of N. aquatica to determine how this complex relates to whole plant architecture and whether whole plant growth is sympodial or monopodial. • METHODS: We used dissections, measurements, and microscopic observations of field-collected plants and plants cultivated for 2 years in outdoor tanks in south Florida, USA. • KEY RESULTS: Nymphoides aquatica had a submerged plagiotropic rhizome that produced floating leaves in an alternate/spiral phyllotaxy. Rhizomes were composed of successive sympodial units that varied in the number of leaves produced before the apex terminated. The basic sympodial unit had a prophyll that subtended a renewal-shoot bud, a short-petioled leaf (SPL) with floating lamina, and an inflorescence; the SPL axillary bud expanded as a vegetative propagule. Plants produced either successive basic sympodial units or expanded sympodia that intercalated long-petioled leaves between the prophyll and the SPL. • CONCLUSIONS: Nymphoides aquatica grows sympodially, forming a rhizome composed of successive basic sympodia and expanded sympodial units. Variations on these types of sympodial growth help explain the branching patterns and leaf morphologies described for other Nymphoides species. Monitoring how these two sympodial phases are affected by water depth provides an ecologically meaningful way to assess N. aquatica's responses to altered hydrology.

10.
Am J Bot ; 93(5): 707-15, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-21642134

RESUMEN

Species of Eleocharis are prominent in aquatic and wetland habitats and serve as models for study of physiological adaptations to aquatic environments. The genus has an unusual morphology because the major photosynthetic organ is the stem. In order to define an architectural model for the genus to understand the evolution of this morphology, we examined mature morphology and development of E. cellulosa in living and fixed material using light and scanning electron microscopy. Eleocharis cellulosa has sympodial, vertical shoots that produce the photosynthetic culms and horizontal shoots that mix monopodial and sympodial development. Each sympodial unit produces three bracts, an elongated photosynthetic internode, then a fourth bract and an inflorescence that either aborts on vegetative culms or expands on reproductive culms. On each sympodium, the first bract subtends a precocious axillary bud that reiterates the sympodial unit; the second bract subtends a bud that develops the horizontal shoot. In both horizontal and vertical shoots, the internode below the second bract is produced by both the second bract and the renewal shoot. Sympodial growth is present in seedlings. In other species of Eleocharis, the structure of the sympodial unit is conserved but morphological diversity develops from variation in horizontal shoot growth.

11.
Am J Bot ; 93(9): 1241-50, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21642188

RESUMEN

Fundamental questions of floral morphology remain unresolved in the grasslike monocots in order Poales, including what constitutes a flower and what constitutes a spikelet. The mapaniid sedges have particularly complex spikeletlike structures, variously interpreted as clusters of flowers or spikelets. Recent phylogenetic studies of Cyperaceae have identified the mapaniid clade as sister to the rest of the family, but the homology of mapaniid reproductive units (RUs) and spikeletlike units (SLUs) to other sedge flowers and spikelets is unclear. We examined reproductive development in the mapaniid Exocarya sclerioides. Inflorescence branches terminated in a SLU with bracts and 1-4 RUs. RUs had four small leaflike structures (LLSs): two lateral LLSs, each associated with a stamen, an abaxial LLS associated with a stamen, and an adaxial LLS. The gynoecium terminated the RU. All RUs were axillary to bracts, and unexpanded bracts and RUs were produced beyond expanded RUs, so SLUs were racemose. RUs developed from a single primordium that initiated two lateral LLSs, then two lateral stamens, then the gynoecium. Initiation of the abaxial LLS and stamen and the adaxial LLS followed. We hypothesize that the RU is a sympodial branch that terminates in a hermaphroditic flower with two stamens and a gynoecium; the two lateral LLSs are halves of a deeply divided prophyll.

12.
Am J Bot ; 92(4): 736-43, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21652453

RESUMEN

Sawgrass, Cladium jamaicense, is the dominant macrophyte in the Florida Everglades. We examined sawgrass flowering phenology and compatibility reactions in ex situ and in situ populations over 2 yr. Sawgrass flowers in May in southern Florida. Flower maturation was relatively synchronous within an inflorescence. Along the entire inflorescence, functionally male flowers emerged initially, followed by stigmas, then anthers of hermaphroditic flowers. Flowers of each sex expanded over 2 d with less than 1 d in between, totaling 6- 7 d for an inflorescence to complete flowering. Hand pollinations showed that sawgrass was self-compatible and not pollen-limited, because open pollinations produced fruit set similar to self- and cross-pollinations. Fruit set was low in autogamy and manipulation treatments. Manipulation treatments were used to study the effect of exposure to airborne pollen during hand pollinations. This treatment thus provides a useful technique for studies on the in situ compatibility of wind-pollinated graminoids. Sawgrass was able to self-fertilize, but the timing of flower maturation on an inflorescence promoted outcrossing. Actual outcrossing rates in sawgrass thus depend on clonal architecture and the timing of floral maturation on other inflorescences within a clone rather than on inflorescences of other genets in a population.

13.
Ann Bot ; 90(3): 361-7, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12234148

RESUMEN

In recent systematic treatments of the Cyperaceae, spikelets of all but the most primitive tribes have been considered to be indeterminate, whereas historically the number of flowers, floral sex and distribution of sexes in spikelets have been important characters in suprageneric classifications. However, descriptions of these spikelet characteristics for sawgrass, Cladium jamaicense Crantz, vary among authors. Spikelet morphology was analysed using developmental and phenological studies of sawgrass populations in south Florida, USA. Sawgrass spikelets have two flowers that expand successively. Flowers are fundamentally hermaphroditic and protogynous. The first flower to expand (F1) terminates the spikelet axis, whereas the second flower (F2), ensheathed by an addorsed prophyll, develops in the axil of the last bract produced on the axis. In 86% of the spikelets examined from ramets of three populations, the gynoecium of the F1 flower aborted, so this flower was functionally male and the spikelet was protandrous. However, in 14% of spikelets from these individuals, the F1 flower was hermaphroditic and could set seed. The F2 flower was typically hermaphroditic and matured stigmas, then anthers. Thus, spikelets in C. jamaicense are determinate and have two flowers that are dichogamous both within flowers and between flowers in a spikelet; spikelet sex expression can vary among plants and populations, especially in the first flower. These data for sawgrass suggest that a re-examination of spikelet development and phenology in other genera is needed to clarify the expression of these characters in the family.


Asunto(s)
Cyperaceae/anatomía & histología , Flores/anatomía & histología , Cyperaceae/clasificación , Cyperaceae/crecimiento & desarrollo , Cyperaceae/fisiología , Florida , Flores/crecimiento & desarrollo , Flores/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda