Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Opt Express ; 26(14): A657-A677, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114008

RESUMEN

Coloured dissolved organic matter (CDOM) is one of the major contributors to the absorption budget of most freshwaters and can be used as a proxy to assess non-optical carbon fractions such as dissolved organic carbon (DOC) and the partial pressure of carbon dioxide (pCO2). Nevertheless, riverine studies that explore the former relationships are still relatively scarce, especially within tropical regions. Here we document the spatial-seasonal variability of CDOM, DOC and pCO2, and assess the potential of CDOM absorption coefficient (aCDOM(412)) for estimating DOC concentration and pCO2 along the Lower Amazon River. Our results revealed differences in the dissolved organic matter (DOM) quality between clearwater (CW) tributaries and the Amazon River mainstream. A linear relationship between DOC and CDOM was observed when tributaries and mainstream are evaluated separately (Amazon River: N = 42, R2 = 0.74, p<0.05; CW: N = 13, R2 = 0.57, p<0.05). However, this linear relationship was not observed during periods of higher rainfall and river discharge, requiring a specific model for these time periods to be developed (N = 25, R2 = 0.58, p<0.05). A strong linear positive relation was found between aCDOM(412) and pCO2(N = 69, R2 = 0.65, p<0.05) along the lower river. pCO2 was less affected by the optical difference between tributaries and mainstream waters or by the discharge conditions when compared to CDOM to DOC relationships. Including the river water temperature in the model improves our ability to estimate pCO2 (N = 69; R2 = 0.80, p<0.05). The ability to assess both DOC and pCO2 from CDOM optical properties opens further perspectives on the use of ocean colour remote sensing data for monitoring carbon dynamics in large running water systems worldwide.

2.
Glob Chang Biol ; 22(3): 1075-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26872424

RESUMEN

The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Bacterias/metabolismo , Metano/metabolismo , Ríos/química , Bacterias/genética , Proteínas Bacterianas/análisis , Biomarcadores , Brasil , Ecosistema , Monitoreo del Ambiente , Oxidación-Reducción
3.
Glob Chang Biol ; 20(9): 2829-40, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24890429

RESUMEN

Methane (CH4 ) fluxes from world rivers are still poorly constrained, with measurements restricted mainly to temperate climates. Additional river flux measurements, including spatio-temporal studies, are important to refine extrapolations. Here we assess the spatio-temporal variability of CH4 fluxes from the Amazon and its main tributaries, the Negro, Solimões, Madeira, Tapajós, Xingu, and Pará Rivers, based on direct measurements using floating chambers. Sixteen of 34 sites were measured during low and high water seasons. Significant differences were observed within sites in the same river and among different rivers, types of rivers, and seasons. Ebullition contributed to more than 50% of total emissions for some rivers. Considering only river channels, our data indicate that large rivers in the Amazon Basin release between 0.40 and 0.58 Tg CH4  yr(-1) . Thus, our estimates of CH4 flux from all tropical rivers and rivers globally were, respectively, 19-51% to 31-84% higher than previous estimates, with large rivers of the Amazon accounting for 22-28% of global river CH4 emissions.


Asunto(s)
Metano/análisis , Ríos/química , Estaciones del Año , Brasil , Ciclo del Carbono , Sedimentos Geológicos/química , Modelos Químicos
4.
Nature ; 436(7050): 538-41, 2005 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16049484

RESUMEN

Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition (13C and 14C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than five years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in medium to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.


Asunto(s)
Dióxido de Carbono/metabolismo , Compuestos Orgánicos/metabolismo , Ríos/química , Atmósfera/química , Brasil , Dióxido de Carbono/análisis , Isótopos de Carbono , Gases/análisis , Gases/metabolismo , Océanos y Mares , Compuestos Orgánicos/química , Agua de Mar/química , Factores de Tiempo , Clima Tropical , Volatilización
5.
Sci Adv ; 7(26)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34172455

RESUMEN

The current resurgence of hydropower expansion toward tropical areas has been largely based on run-of-the-river (ROR) dams, which are claimed to have lower environmental impacts due to their smaller reservoirs. The Belo Monte dam was built in Eastern Amazonia and holds the largest installed capacity among ROR power plants worldwide. Here, we show that postdamming greenhouse gas (GHG) emissions in the Belo Monte area are up to three times higher than preimpoundment fluxes and equivalent to about 15 to 55 kg CO2eq MWh-1 Since per-area emissions in Amazonian reservoirs are significantly higher than global averages, reducing flooded areas and prioritizing the power density of hydropower plants seem to effectively reduce their carbon footprints. Nevertheless, total GHG emissions are substantial even from this leading-edge ROR power plant. This argues in favor of avoiding hydropower expansion in Amazonia regardless of the reservoir type.

6.
Nat Commun ; 10(1): 4018, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488815

RESUMEN

Riverine dissolved organic carbon (DOC) contains charcoal byproducts, termed black carbon (BC). To determine the significance of BC as a sink of atmospheric CO2 and reconcile budgets, the sources and fate of this large, slow-cycling and elusive carbon pool must be constrained. The Amazon River is a significant part of global BC cycling because it exports an order of magnitude more DOC, and thus dissolved BC (DBC), than any other river. We report spatially resolved DBC quantity and radiocarbon (Δ14C) measurements, paired with molecular-level characterization of dissolved organic matter from the Amazon River and tributaries during low discharge. The proportion of BC-like polycyclic aromatic structures decreases downstream, but marked spatial variability in abundance and Δ14C values of DBC molecular markers imply dynamic sources and cycling in a manner that is incongruent with bulk DOC. We estimate a flux from the Amazon River of 1.9-2.7 Tg DBC yr-1 that is composed of predominately young DBC, suggesting that loss processes of modern DBC are important.

7.
Am J Surg ; 214(5): 798-803, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28213997

RESUMEN

BACKGROUND: The role of echocardiographic indices of preload and contractility in predicting outcomes is unknown. We report the association of end diastolic area (EDA) and fractional area of change (FAC) with mortality in a cohort of trauma and burn patients. METHODS: Data on 86 patients admitted to a tertiary care center between July 2013 and July 2015 were reviewed. The association between abnormal EDA and FAC and adverse clinical outcomes was tested using exact logistic regression analysis. RESULTS: 31 patients had abnormal EDA (<10 cm2) and 13 had low FAC (<40%). Those with low FAC had higher blood pressure on admission, and lower urine output and higher lactic acid (p= < 0.01) on echocardiography day. Abnormal EDA was associated with in-hospital death (OR 4.20, 95% CI 1.45-12.17). CONCLUSIONS: Echocardiographic measurements can predict outcome in trauma and burn patients. Further studies are needed to confirm these findings.


Asunto(s)
Ecocardiografía Transesofágica , Mortalidad Hospitalaria , Heridas y Lesiones/mortalidad , Quemaduras/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
8.
Crit Ultrasound J ; 9(1): 20, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29022204

RESUMEN

BACKGROUND: Conventional echocardiographic technique for assessment of volume status and cardiac contractility utilizes left ventricular end-diastolic area (LVEDA) and fractional area of change (FAC), respectively. Our goal was to find a technically reliable yet faster technique to evaluate volume status and contractility by measuring left ventricular end-diastolic diameter (LVEDD) and fractional shortening (FS) in a cohort of mechanically ventilated trauma and burn patients using hemodynamic transesophageal echocardiographic (hTEE) monitoring. METHODS: Retrospective chart review performed at trauma/burn intensive care unit (TBICU). Data on 88 mechanically ventilated surgical intensive care patients cared for between July 2013 and July 2015 were reviewed. Initial measurements of LVEDA, left ventricular end-systolic area (LVESA) and FAC were collected. Post-processing left ventricular end-systolic (LVESD) and end-diastolic diameters (LVEDD) were measured and fractional shortening (FS) was calculated. Two orthogonal measurements of LV diameter were obtained in transverse (Tr) and posteroanterior (PA) orientation. RESULTS: There was a significant correlation between transverse and posteroanterior left ventricular diameter measurements in both systole and diastole. In systole, r = 0.92, p < 0.01 for LVESD-Tr (mean 23.47 mm, SD ± 6.77) and LVESD-PA (mean 24.84 mm, SD = 8.23). In diastole, r = 0.80, p < 0.01 for LVEDD-Tr (mean 37.60 mm, SD ± 6.45), and LVEDD-PA diameters (mean 42.24 mm, SD ± 7.97). Left ventricular area (LVEDA) also significantly correlated with left ventricular diameter LVEDD-Tr (r = 0.84, p < 0.01) and LVEDD-PA (r = 0.90, p < 0.01). Both transverse and PA measurements of fractional shortening were significantly (p < 0.0001) and similarly correlated with systolic function as measured by FAC. Bland-Altman analyses also indicated that the assessment of fractional shortening using left ventricular posteroanterior diameter measurement shows agreement with FAC. CONCLUSIONS: Left ventricular diameter measurements are a reliable and technically feasible alternative to left ventricular area measurements in the assessment of cardiac filling and systolic function.

9.
Front Microbiol ; 8: 882, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28588561

RESUMEN

Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 µm and >2.0 µm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.

10.
mSphere ; 2(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28989970

RESUMEN

The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river's lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.

11.
Microbiome ; 3: 39, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26353777

RESUMEN

BACKGROUND: The Amazon River runs nearly 6500 km across the South American continent before emptying into the western tropical North Atlantic Ocean. In terms of both volume and watershed area, it is the world's largest riverine system, affecting elemental cycling on a global scale. RESULTS: A quantitative inventory of genes and transcripts benchmarked with internal standards was obtained at five stations in the lower Amazon River during May 2011. At each station, metagenomes and metatranscriptomes were obtained in duplicate for two microbial size fractions (free-living, 0.2 to 2.0 µm; particle-associated, 2.0 to 297 µm) using 150 × 150 paired-end Illumina sequencing. Forty eight sample datasets were obtained, averaging 15 × 10(6) potential protein-encoding reads each (730 × 10(6) total). Prokaryotic metagenomes and metatranscriptomes were dominated by members of the phyla Actinobacteria, Planctomycetes, Betaproteobacteria, Verrucomicrobia, Nitrospirae, and Acidobacteria. The actinobacterium SCGC AAA027-L06 reference genome recruited the greatest number of reads overall, with this single bin contributing an average of 50 billion genes and 500 million transcripts per liter of river water. Several dominant taxa were unevenly distributed between the free-living and particle-associated size fractions, such as a particle-associated bias for reads binning to planctomycete Schlesneria paludicola and a free-living bias for actinobacterium SCGC AAA027-L06. Gene expression ratios (transcripts to gene copy ratio) increased downstream from Óbidos to Macapá and Belém, indicating higher per cell activity of Amazon River bacteria and archaea as river water approached the ocean. CONCLUSION: This inventory of riverine microbial genes and transcripts, benchmarked with internal standards for full quantitation, provides an unparalleled window into microbial taxa and functions in the globally important Amazon River ecosystem.


Asunto(s)
Metagenoma , Metagenómica , Ríos/microbiología , Estaciones del Año , Transcriptoma , Microbiota
12.
PLoS One ; 8(8): e71395, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967203

RESUMEN

The Tonle Sap Lake in Cambodia is a dynamic flood-pulsed ecosystem that annually increases its surface area from roughly 2,500 km(2) to over 12,500 km(2) driven by seasonal flooding from the Mekong River. This flooding is thought to structure many of the critical ecological processes, including aquatic primary and secondary productivity. The lake also has a large fishery that supports the livelihoods of nearly 2 million people. We used a state-space oxygen mass balance model and continuous dissolved oxygen measurements from four locations to provide the first estimates of gross primary productivity (GPP) and ecosystem respiration (ER) for the Tonle Sap. GPP averaged 4.1±2.3 g O2 m(-3) d(-1) with minimal differences among sites. There was a negative correlation between monthly GPP and lake level (r = 0.45) and positive correlation with turbidity (r = 0.65). ER averaged 24.9±20.0 g O2 m(-3) d(-1) but had greater than six-fold variation among sites and minimal seasonal change. Repeated hypoxia was observed at most sampling sites along with persistent net heterotrophy (GPP

Asunto(s)
Ecosistema , Explotaciones Pesqueras , Lagos , Animales , Cambodia , Cadena Alimentaria , Geografía , Humanos , Oxígeno/química , Imágenes Satelitales , Estaciones del Año
13.
Acta amaz ; 39(2): 397-404, 2009. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-522387

RESUMEN

An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.


A metodologia analítica foi desenvolvida empregando coluna pré-concentradora AC15 em linha na cromatografia iônica na determinação simultânea de ânions orgânicos e inorgânicos, com uso de coluna de guarda AG15 e analítica AS15, 250 x 4 mm i.d. (Dionex Corp.). O gradiente de concentração do eluente foi fixo em 10,0 mmol.l-1 KOH nos tempos de retenção de 0 até 6,5 min, seguido do aumento da concentração até 45,0 mmol.l-1 KOH a 21 min, imediatamente retornando e mantendo a concentração inicial até o tempo total de análise de 24 min. Os compostos foram separados com boa resolução e deslocados para uma cela de detecção de condutividade elétrica acoplada a um detector eletroquímico. O emprego da coluna pré-concentradora em linha apresentou vantagens analíticas na determinação de rotina dos íons na faixa linear de 0,01 até 1,0 mg l-1 (r=0,9989) de ácidos orgânicos (acético, propiônico, fórmico, butírico, glicólico, pirúvico, tartárico, ftálico, metanossulfônico, valérico, maleico, oxálico e cítrico) e 0,01 até 5,0 mg.l-1 (r=0,9987) de ânions inorgânicos (fluoreto, cloreto, nitrito, brometo, nitrato, sulfato, clorato e fosfato) sem pré-tratamento da amostra. Um tempo de análise de 24 min e limite de detecção de 5 µ.l-1 foram obtidos para os ânions orgânicos ácido ácetico, ácido fórmico, ácido butírico, ácido glicólico, ácido valérico, ácido cítrico e de 10 µg.l-1 para ácido propiônico, piruvato, ácido tartárico, ácido ftálico, ácido metasulfônico e ácido maleico. Para os ânions inorgânicos 2 µg.l-1 de fluoreto, cloreto, nitrato, brometo, sulfato e 10 µg.l-1 de clorato, nitrito e fosfato foram estimados, segundo metodologia sugerida por IUPAC.


Asunto(s)
Cromatografía , Aniones
14.
Nature ; 416(6881): 617-20, 2002 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-11948346

RESUMEN

Terrestrial ecosystems in the humid tropics play a potentially important but presently ambiguous role in the global carbon cycle. Whereas global estimates of atmospheric CO2 exchange indicate that the tropics are near equilibrium or are a source with respect to carbon, ground-based estimates indicate that the amount of carbon that is being absorbed by mature rainforests is similar to or greater than that being released by tropical deforestation (about 1.6 Gt C yr-1). Estimates of the magnitude of carbon sequestration are uncertain, however, depending on whether they are derived from measurements of gas fluxes above forests or of biomass accumulation in vegetation and soils. It is also possible that methodological errors may overestimate rates of carbon uptake or that other loss processes have yet to be identified. Here we demonstrate that outgassing (evasion) of CO2 from rivers and wetlands of the central Amazon basin constitutes an important carbon loss process, equal to 1.2 +/- 0.3 Mg C ha-1 yr-1. This carbon probably originates from organic matter transported from upland and flooded forests, which is then respired and outgassed downstream. Extrapolated across the entire basin, this flux-at 0.5 Gt C yr-1-is an order of magnitude greater than fluvial export of organic carbon to the ocean. From these findings, we suggest that the overall carbon budget of rainforests, summed across terrestrial and aquatic environments, appears closer to being in balance than would be inferred from studies of uplands alone.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Agua Dulce/química , Clima Tropical , Brasil , Océanos y Mares , Árboles/metabolismo
15.
Acta amaz ; 35(2): 197-205, abr.-jun. 2005. ilus, mapas, tab, graf
Artículo en Portugués | LILACS | ID: lil-413334

RESUMEN

Este trabalho discute os efeitos das mudanças do uso do solo na biogequímica dos rios da bacia de drenagem do rio Ji-Paraná (Rondônia). Nesta região, a distribuição espacial do desmatamento e das propriedades do solo resultam em sinais diferentes, possibilitando a divisão dos sistemas fluviais em três grupos: rios com águas pobres em íons e baixo impacto; rios com conteúdo iônico intermediário e impacto médio e rios com elevados conteúdo iônico e impacto antropogênico. As características biogeoquímicas dos rios têm relação significativa com a área de pasto, melhor parâmetro para prever a condutividade elétrica (r² = 0,87) e as concentrações de sódio (r² = 0,75), cloreto (r² = 0,69), potássio (r² = 0,63), fosfato (r² = 0.78), nitrogênio inorgânico (r² = 0.52), carbono inorgânico (r² = 0.81) e carbono orgânico (rain ² = 0.51) dissolvidos. Cálcio e magnésio tiveram sua variância explicada pelas características do solo e pastagem. Nossos resultados indicam que as mudanças observadas na micro-escala constituem "sinais biogeoquímicos" gerados pelo processamento do material nas margens dos rios. A medida em que os rios evoluem para ordens superiores, os sinais persistentes nos canais fluviais estão mais associdados às características da bacia de drenagem (solos e uso da terra). Apesar dos efeitos das mudanças observadas no uso do solo não serem ainda detectáveis na macro-escala (bacia amazônica), a disrupção da estrutura e funcionamento dos ecossistemas é detectável nas micro e meso escalas, com alterações significativas na ciclagem de nutrientes nos ecossistemas fluviais.


Asunto(s)
Ecosistema Amazónico , Ríos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda