Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecol Lett ; 14(2): 169-78, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21199248

RESUMEN

Despite growing awareness of the significance of body-size and predator-prey body-mass ratios for the stability of ecological networks, our understanding of their distribution within ecosystems is incomplete. Here, we study the relationships between predator and prey size, body-mass ratios and predator trophic levels using body-mass estimates of 1313 predators (invertebrates, ectotherm and endotherm vertebrates) from 35 food-webs (marine, stream, lake and terrestrial). Across all ecosystem and predator types, except for streams (which appear to have a different size structure in their predator-prey interactions), we find that (1) geometric mean prey mass increases with predator mass with a power-law exponent greater than unity and (2) predator size increases with trophic level. Consistent with our theoretical derivations, we show that the quantitative nature of these relationships implies systematic decreases in predator-prey body-mass ratios with the trophic level of the predator. Thus, predators are, on an average, more similar in size to their prey at the top of food-webs than that closer to the base. These findings contradict the traditional Eltonian paradigm and have implications for our understanding of body-mass constraints on food-web topology, community dynamics and stability.


Asunto(s)
Peso Corporal , Ecosistema , Modelos Biológicos , Animales , Cadena Alimentaria , Agua Dulce , Invertebrados/crecimiento & desarrollo , Océanos y Mares , Vertebrados/crecimiento & desarrollo
2.
J Theor Biol ; 279(1): 169-71, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21453710

RESUMEN

Revealing the processes that determine who eats whom, and thereby the structure of food webs, is a long running challenge in ecological research. Recent advances include development of new methods for measuring fit of models to observed food web data, and thereby testing which are the 'best' food web models. The best model could be considered the most efficient with relatively few parameters and high explanatory power. Another recent advance involves adding some additional biology to food web models in the form of foraging theory based on maximisation of energy intake as the predictor of species' diets in food webs. While it is interesting to compare efficiency among food web models, we believe that such comparisons at least should be interpreted with caution, since they do not account for any differences in motivation, formulation, and potential that might also exist among models. Furthermore, we see an important but somewhat neglected role for experimental tests of models of food web structure.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Tamaño Corporal , Especificidad de la Especie
3.
Proc Natl Acad Sci U S A ; 105(11): 4191-6, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18337512

RESUMEN

Understanding what structures ecological communities is vital to answering questions about extinctions, environmental change, trophic cascades, and ecosystem functioning. Optimal foraging theory was conceived to increase such understanding by providing a framework with which to predict species interactions and resulting community structure. Here, we use an optimal foraging model and allometries of foraging variables to predict the structure of real food webs. The qualitative structure of the resulting model provides a more mechanistic basis for the phenomenological rules of previous models. Quantitative analyses show that the model predicts up to 65% of the links in real food webs. The deterministic nature of the model allows analysis of the model's successes and failures in predicting particular interactions. Predacious and herbivorous feeding interactions are better predicted than pathogenic, parasitoid, and parasitic interactions. Results also indicate that accurate prediction and modeling of some food webs will require incorporating traits other than body size and diet choice models specific to different types of feeding interaction. The model results support the hypothesis that individual behavior, subject to natural selection, determines individual diets and that food web structure is the sum of these individual decisions.


Asunto(s)
Cadena Alimentaria , Animales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda