Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Phys Chem A ; 114(27): 7284-91, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20568797

RESUMEN

The dehydrogenation of semiconducting boron carbide (B(10)C(2)H(x)) films as well as the three closo-carborane isomers of dicarbadodecaborane (C(2)B(10)H(12)) and two isomers of the corresponding closo-phosphacarborane (PCB(10)H(11)) all appear to be very similar. Photoionization mass spectrometry studies at near-threshold gas phase photoionization indicate that the preferred pathway for dissociation of the parent cation species (C(2)B(10)H(10)(+) or PCB(10)H(9)(+)) is, in all cases, the loss of H(2). Ab initio density functional theory (DFT) calculations indicate that energetically preferred sites for exopolyhedral hydrogen (B-H) bond dissociation are in all cases at B atoms opposite the C atoms in the parent cage molecule. The site of photodissociation of hydrogen from semiconducting boron carbide (B(10)C(2)H(x)) films, fabricated by plasma-enhanced chemical vapor deposition, is a cage boron atom that can bond to nitrogen upon exposure to VUV light in the presence of NH(3). Shifts in core level binding energies due to nitrogen bond formation indicate that B-N bond formation occurs only at B atoms bound to other boron atoms (B-B sites) and not at B-C sites or at C sites, in agreement with gas phase results.

2.
J Phys Chem A ; 112(15): 3311-8, 2008 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-18327925

RESUMEN

The ionic fragmentation following B 1s and C 1s excitation of three isomeric carborane cage compounds [closo-dicarbadodecaboranes: orthocarborane (1,2-C2B10H12), metacarborane (1,7-C2B10H12), and paracarborane (1,12-C2B10H12)] is compared with the energetics of decomposition. The fragmentation yields for all three molecules are quite similar. Thermodynamic cycles are constructed for neutral and ionic species in an attempt to systemically characterize single-ion closo-carborane creation and fragmentation processes. Lower energy decomposition processes are favored. Among the ionic species, the photon-induced decomposition is dominated by BH+ and BH2(+) fragment loss. Changes in ion yield associated with core to bound excitations are observed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda