Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 81(2): 386-397.e7, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33340488

RESUMEN

In tumors, nutrient availability and metabolism are known to be important modulators of growth signaling. However, it remains elusive whether cancer cells that are growing out in the metastatic niche rely on the same nutrients and metabolic pathways to activate growth signaling as cancer cells within the primary tumor. We discovered that breast-cancer-derived lung metastases, but not the corresponding primary breast tumors, use the serine biosynthesis pathway to support mTORC1 growth signaling. Mechanistically, pyruvate uptake through Mct2 supported mTORC1 signaling by fueling serine biosynthesis-derived α-ketoglutarate production in breast-cancer-derived lung metastases. Consequently, expression of the serine biosynthesis enzyme PHGDH was required for sensitivity to the mTORC1 inhibitor rapamycin in breast-cancer-derived lung tumors, but not in primary breast tumors. In summary, we provide in vivo evidence that the metabolic and nutrient requirements to activate growth signaling differ between the lung metastatic niche and the primary breast cancer site.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Mamarias Experimentales/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosfoglicerato-Deshidrogenasa/genética , Serina/biosíntesis , Animales , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Sirolimus/farmacología
2.
Nature ; 605(7911): 747-753, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35585241

RESUMEN

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Asunto(s)
Neoplasias de la Mama , Metástasis de la Neoplasia , Fosfoglicerato-Deshidrogenasa , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Silenciador del Gen , Humanos , Ratones , Fosfoglicerato-Deshidrogenasa/genética , Serina/metabolismo
3.
Nature ; 565(7740): 511-515, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651640

RESUMEN

Endochondral ossification, an important process in vertebrate bone formation, is highly dependent on correct functioning of growth plate chondrocytes1. Proliferation of these cells determines longitudinal bone growth and the matrix deposited provides a scaffold for future bone formation. However, these two energy-dependent anabolic processes occur in an avascular environment1,2. In addition, the centre of the expanding growth plate becomes hypoxic, and local activation of the hypoxia-inducible transcription factor HIF-1α is necessary for chondrocyte survival by unidentified cell-intrinsic mechanisms3-6. It is unknown whether there is a requirement for restriction of HIF-1α signalling in the other regions of the growth plate and whether chondrocyte metabolism controls cell function. Here we show that prolonged HIF-1α signalling in chondrocytes leads to skeletal dysplasia by interfering with cellular bioenergetics and biosynthesis. Decreased glucose oxidation results in an energy deficit, which limits proliferation, activates the unfolded protein response and reduces collagen synthesis. However, enhanced glutamine flux increases α-ketoglutarate levels, which in turn increases proline and lysine hydroxylation on collagen. This metabolically regulated collagen modification renders the cartilaginous matrix more resistant to protease-mediated degradation and thereby increases bone mass. Thus, inappropriate HIF-1α signalling results in skeletal dysplasia caused by collagen overmodification, an effect that may also contribute to other diseases involving the extracellular matrix such as cancer and fibrosis.


Asunto(s)
Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Condrocitos/metabolismo , Colágeno/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Cartílago/metabolismo , Matriz Extracelular/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Placa de Crecimiento/metabolismo , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/deficiencia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Ácidos Cetoglutáricos/metabolismo , Lisina/metabolismo , Masculino , Ratones , Osteogénesis , Oxidación-Reducción , Prolina/metabolismo
4.
Nature ; 566(7744): 403-406, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728499

RESUMEN

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ácido Graso Desaturasas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ácidos Oléicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Desaturasa/metabolismo
6.
Plant Cell ; 30(3): 620-637, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29514943

RESUMEN

In addition to the full-length transcript ARF8.1, a splice variant (ARF8.2) of the auxin response factor gene ARF8 has been reported. Here, we identified an intron-retaining variant of ARF8.2, ARF8.4, whose translated product is imported into the nucleus and has tissue-specific localization in Arabidopsis thaliana By inducibly expressing each variant in arf8-7 flowers, we show that ARF8.4 fully complements the short-stamen phenotype of the mutant and restores the expression of AUX/IAA19, encoding a key regulator of stamen elongation. By contrast, the expression of ARF8.2 and ARF8.1 had minor or no effects on arf8-7 stamen elongation and AUX/IAA19 expression. Coexpression of ARF8.2 and ARF8.4 in both the wild type and arf8-7 caused premature anther dehiscence: We show that ARF8.2 is responsible for increased expression of the jasmonic acid biosynthetic gene DAD1 and that ARF8.4 is responsible for premature endothecium lignification due to precocious expression of transcription factor gene MYB26 Finally, we show that ARF8.4 binds to specific auxin-related sequences in both the AUX/IAA19 and MYB26 promoters and activates their transcription more efficiently than ARF8.2. Our data suggest that ARF8.4 is a tissue-specific functional splice variant that controls filament elongation and endothecium lignification by directly regulating key genes involved in these processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
7.
Metab Eng ; 43(Pt B): 187-197, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27847310

RESUMEN

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We addressed this question by decoupling loss of SDH and complex I activity in cancer cells and neurons. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases.


Asunto(s)
Complejo I de Transporte de Electrón , Mutación , Proteínas de Neoplasias , Neoplasias , Succinato Deshidrogenasa , Línea Celular Tumoral , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Neuronas/enzimología , Neuronas/patología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
8.
Biol Cell ; 107(8): 251-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25913226

RESUMEN

Metabolic alterations have emerged as an important hallmark in the development of various diseases. Thus, understanding the complex interplay of metabolism with other cellular processes such as cell signalling is critical to rationally control and modulate cellular physiology. Here, we review in the context of mammalian target of rapamycin, AMP-activated protein kinase and p53, the orchestrated interplay between metabolism and cellular signalling as well as transcriptional regulation. Moreover, we discuss recent discoveries in auto-regulation of metabolism (i.e. how metabolic parameters such as metabolite levels activate or inhibit enzymes and thus metabolic pathways). Finally, we review functional consequences of post-translational modification on metabolic enzyme abundance and/or activities.


Asunto(s)
Regulación de la Expresión Génica , Redes y Vías Metabólicas , Transducción de Señal , Animales , Humanos , Procesamiento Proteico-Postraduccional
9.
Cell Rep ; 43(4): 114103, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607920

RESUMEN

Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.


Asunto(s)
Proliferación Celular , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , NAD , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , NAD/metabolismo , Línea Celular Tumoral , Mitocondrias/metabolismo , Animales , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Ratones
10.
Cell Rep ; 40(4): 111105, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905715

RESUMEN

A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD+ and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal.


Asunto(s)
Ciclo del Ácido Cítrico , Mitocondrias , Proliferación Celular , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Respiración
11.
Mol Cancer Ther ; 20(1): 50-63, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203732

RESUMEN

Metabolic rewiring is a hallmark of cancer that supports tumor growth, survival, and chemotherapy resistance. Although normal cells often rely on extracellular serine and glycine supply, a significant subset of cancers becomes addicted to intracellular serine/glycine synthesis, offering an attractive drug target. Previously developed inhibitors of serine/glycine synthesis enzymes did not reach clinical trials due to unfavorable pharmacokinetic profiles, implying that further efforts to identify clinically applicable drugs targeting this pathway are required. In this study, we aimed to develop therapies that can rapidly enter the clinical practice by focusing on drug repurposing, as their safety and cost-effectiveness have been optimized before. Using a yeast model system, we repurposed two compounds, sertraline and thimerosal, for their selective toxicity against serine/glycine synthesis-addicted breast cancer and T-cell acute lymphoblastic leukemia cell lines. Isotope tracer metabolomics, computational docking, enzymatic assays, and drug-target interaction studies revealed that sertraline and thimerosal inhibit serine/glycine synthesis enzymes serine hydroxymethyltransferase and phosphoglycerate dehydrogenase, respectively. In addition, we demonstrated that sertraline's antiproliferative activity was further aggravated by mitochondrial inhibitors, such as the antimalarial artemether, by causing G1-S cell-cycle arrest. Most notably, this combination also resulted in serine-selective antitumor activity in breast cancer mouse xenografts. Collectively, this study provides molecular insights into the repurposed mode-of-action of the antidepressant sertraline and allows to delineate a hitherto unidentified group of cancers being particularly sensitive to treatment with sertraline. Furthermore, we highlight the simultaneous inhibition of serine/glycine synthesis and mitochondrial metabolism as a novel treatment strategy for serine/glycine synthesis-addicted cancers.


Asunto(s)
Antidepresivos/farmacología , Neoplasias de la Mama/patología , Reposicionamiento de Medicamentos , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina/biosíntesis , Serina/sangre , Sertralina/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Simulación del Acoplamiento Molecular , Fosfoglicerato-Deshidrogenasa/metabolismo , Timerosal/farmacología
12.
Cell Rep ; 37(13): 110171, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965415

RESUMEN

Macrophages are often prominently present in the tumor microenvironment, where distinct macrophage populations can differentially affect tumor progression. Although metabolism influences macrophage function, studies on the metabolic characteristics of ex vivo tumor-associated macrophage (TAM) subsets are rather limited. Using transcriptomic and metabolic analyses, we now reveal that pro-inflammatory major histocompatibility complex (MHC)-IIhi TAMs display a hampered tricarboxylic acid (TCA) cycle, while reparative MHC-IIlo TAMs show higher oxidative and glycolytic metabolism. Although both TAM subsets rapidly exchange lactate in high-lactate conditions, only MHC-IIlo TAMs use lactate as an additional carbon source. Accordingly, lactate supports the oxidative metabolism in MHC-IIlo TAMs, while it decreases the metabolic activity of MHC-IIhi TAMs. Lactate subtly affects the transcriptome of MHC-IIlo TAMs, increases L-arginine metabolism, and enhances the T cell suppressive capacity of these TAMs. Overall, our data uncover the metabolic intricacies of distinct TAM subsets and identify lactate as a carbon source and metabolic and functional regulator of TAMs.


Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Lactatos/metabolismo , Neoplasias Pulmonares/patología , Linfocitos T/inmunología , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Femenino , Glucólisis , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Complejo Mayor de Histocompatibilidad , Metaboloma , Ratones , Ratones Endogámicos C57BL , Transcriptoma
13.
Dev Cell ; 53(5): 530-544.e8, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32470321

RESUMEN

Correct functioning of chondrocytes is crucial for long bone growth and fracture repair. These cells are highly anabolic but survive and function in an avascular environment, implying specific metabolic requirements that are, however, poorly characterized. Here, we show that chondrocyte identity and function are closely linked with glutamine metabolism in a feedforward process. The master chondrogenic transcription factor SOX9 stimulates glutamine metabolism by increasing glutamine consumption and levels of glutaminase 1 (GLS1), a rate-controlling enzyme in this pathway. Consecutively, GLS1 action is critical for chondrocyte properties and function via a tripartite mechanism. First, glutamine controls chondrogenic gene expression epigenetically through glutamate dehydrogenase-dependent acetyl-CoA synthesis, necessary for histone acetylation. Second, transaminase-mediated aspartate synthesis supports chondrocyte proliferation and matrix synthesis. Third, glutamine-derived glutathione synthesis avoids harmful reactive oxygen species accumulation and allows chondrocyte survival in the avascular growth plate. Collectively, our study identifies glutamine as a metabolic regulator of cartilage fitness during bone development.


Asunto(s)
Condrocitos/metabolismo , Glutamina/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/fisiología , Femenino , Glutaminasa/metabolismo , Masculino , Ratones , Factor de Transcripción SOX9/metabolismo
14.
Cell Rep ; 31(12): 107806, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579932

RESUMEN

Cancer cells display an increased plasticity in their lipid metabolism, which includes the conversion of palmitate to sapienate via the enzyme fatty acid desaturase 2 (FADS2). We find that FADS2 expression correlates with mammalian target of rapamycin (mTOR) signaling and sterol regulatory element-binding protein 1 (SREBP-1) activity across multiple cancer types and is prognostic in some cancer types. Accordingly, activating mTOR signaling by deleting tuberous sclerosis complex 2 (Tsc2) or overexpression of SREBP-1/2 is sufficient to increase FADS2 mRNA expression and sapienate metabolism in mouse embryonic fibroblasts (MEFs) and U87 glioblastoma cells, respectively. Conversely, inhibiting mTOR signaling decreases FADS2 expression and sapienate biosynthesis in MEFs with Tsc2 deletion, HUH7 hepatocellular carcinoma cells, and orthotopic HUH7 liver xenografts. In conclusion, we show that mTOR signaling and SREBP activity are sufficient to activate sapienate metabolism by increasing FADS2 expression. Consequently, targeting mTOR signaling can reduce sapienate metabolism in vivo.


Asunto(s)
Ácido Graso Desaturasas/genética , Regulación Neoplásica de la Expresión Génica , Ácidos Palmíticos/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Ácido Graso Desaturasas/metabolismo , Humanos , Ratones , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
15.
Leukemia ; 33(2): 319-332, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29930300

RESUMEN

The R98S mutation in ribosomal protein L10 (RPL10 R98S) affects 8% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) cases, and was previously described to impair cellular proliferation. The current study reveals that RPL10 R98S cells accumulate reactive oxygen species which promotes mitochondrial dysfunction and reduced ATP levels, causing the proliferation defect. RPL10 R98S mutant leukemia cells can survive high oxidative stress levels via a specific increase of IRES-mediated translation of the anti-apoptotic factor B-cell lymphoma 2 (BCL-2), mediating BCL-2 protein overexpression. RPL10 R98S selective sensitivity to the clinically available Bcl-2 inhibitor Venetoclax (ABT-199) was supported by suppression of splenomegaly and the absence of human leukemia cells in the blood of T-ALL xenografted mice. These results shed new light on the oncogenic function of ribosomal mutations in cancer, provide a novel mechanism for BCL-2 upregulation in leukemia, and highlight BCL-2 inhibition as a novel therapeutic opportunity in RPL10 R98S defective T-ALL.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Animales , Regulación Leucémica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína Ribosómica L10 , Proteínas Ribosómicas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Leukemia ; 33(4): 1055-1062, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30850735

RESUMEN

Following the publication of this article, the authors noted that Dr Laura Fancello was not listed among the authors. The corrected author list is given below. Additionally, the following was not included in the author contribution statement: 'L.F. analyzed RNA sequencing data'.

17.
Nat Commun ; 10(1): 2542, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186416

RESUMEN

Somatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH.


Asunto(s)
Glicina/metabolismo , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Serina/metabolismo , Animales , Línea Celular , Perfilación de la Expresión Génica , Ratones , Monoéster Fosfórico Hidrolasas , Polirribosomas/genética , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteína Ribosómica L10 , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Análisis de Secuencia de ARN
18.
Cell Rep ; 26(9): 2257-2265.e4, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811976

RESUMEN

Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.


Asunto(s)
Ácido Aspártico/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neoplasias/metabolismo , Proteínas Supresoras de Tumor/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Aspartato Aminotransferasa Citoplasmática/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Ácido Aspártico/farmacología , Carcinoma de Células Renales/enzimología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Glutamina/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/enzimología , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/antagonistas & inhibidores , Neoplasias/patología , Oxidación-Reducción , Proteínas Supresoras de Tumor/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-28857478

RESUMEN

Metabolism is tied into complex interactions with cell intrinsic and extrinsic processes that go beyond the conversion of nutrients into energy and biomass. Indeed, metabolism is a central cellular hub that interconnects and influences the microenvironment, the cellular phenotype, cell signaling, and the (epi)genetic landscape. While these interactions evolved to support survival and function of normal cells, they are hijacked by cancer cells to enable cancer maintenance and progression. Thus, a mechanistic and functional understanding of complex metabolic interactions provides a basis for the discovery of novel metabolic vulnerabilities in cancer. In this review, we will summarize and provide context for the to-date discovered complex metabolic interactions by discussing how the microenvironment as well as the cellular phenotype define cancer metabolism, and how metabolism shapes the epigenetic state of cancer cells. Many of the studies investigating the crosstalk of metabolism with cell intrinsic and extrinsic processes have used integrative data analysis approaches at the interface between computational and experimental cancer research, and we will highlight those throughout the review. In conclusion, identifying and understanding complex metabolic interactions is a basis for deciphering novel metabolic vulnerabilities of cancer cells. WIREs Syst Biol Med 2018, 10:e1397. doi: 10.1002/wsbm.1397 This article is categorized under: Biological Mechanisms > Metabolism Physiology > Mammalian Physiology in Health and Disease.


Asunto(s)
Neoplasias/patología , Microambiente Tumoral/fisiología , Animales , Ciclo del Ácido Cítrico/fisiología , ADN/metabolismo , Epigenómica , Histonas/metabolismo , Humanos , Redes y Vías Metabólicas , Neoplasias/metabolismo
20.
Mol Plant ; 6(5): 1616-29, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23475998

RESUMEN

The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas F-Box/metabolismo , Hipocótilo/crecimiento & desarrollo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9 , Tamaño de la Célula/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Proteínas F-Box/química , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Hipocótilo/genética , Hipocótilo/efectos de la radiación , Luz , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Mutación/genética , Péptido Hidrolasas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Ubiquitinación/efectos de la radiación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda