Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33274502

RESUMEN

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Asunto(s)
Ecosistema , Ciencia Ambiental , Biodiversidad , Ecología , Suelo
2.
Microb Ecol ; 79(3): 686-693, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31654107

RESUMEN

Carbon cycling models consider soil carbon sequestration a key process for climate change mitigation. However, these models mostly focus on abiotic soil processes and, despite its recognized critical mechanistic role, do not explicitly include interacting soil organisms. Here, we use a literature study to show that even a relatively simple soil community (heathland soils) contains large uncertainties in temporal and spatial food web structure. Next, we used a Lotka-Volterra-based food web model to demonstrate that, due to these uncertainties, climate change can either increase or decrease soil carbon sequestration to varying extents. Both the strength and direction of changes strongly depend on (1) the main consumer's (enchytraeid worms) feeding preferences and (2) whether decomposers (fungi) or enchytraeid worms are more sensitive to stress. Hence, even for a soil community with a few dominant functional groups and a simulation model with a few parameters, filling these knowledge gaps is a critical first step towards the explicit integration of soil food web dynamics into carbon cycling models in order to better assess the role soils play in climate change mitigation.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Cambio Climático , Ecosistema , Suelo/química , Cadena Alimentaria , Modelos Biológicos , Microbiología del Suelo
3.
Int J Biometeorol ; 64(10): 1709-1727, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32671669

RESUMEN

Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and projections for the future. Here, we present a new method for creating realistic climate forcing for manipulation experiments and apply it to the UHasselt Ecotron experiment. The new methodology uses data derived from the best available regional climate model projection and consists of generating climate forcing along a gradient representative of increasingly high global mean air temperature anomalies. We first identified the best-performing regional climate model simulation for the ecotron site from the Coordinated Regional Downscaling Experiment in the European domain (EURO-CORDEX) ensemble based on two criteria: (i) highest skill compared to observations from a nearby weather station and (ii) representativeness of the multi-model mean in future projections. The time window is subsequently selected from the model projection for each ecotron unit based on the global mean air temperature of the driving global climate model. The ecotron units are forced with 3-hourly output from the projections of the 5-year period in which the global mean air temperature crosses the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well representing possible compound events. The presented methodology can also be applied to other manipulation experiments, aiming at investigating ecosystem responses to realistic future climate change.


Asunto(s)
Cambio Climático , Ecosistema , Modelos Teóricos , Temperatura , Tiempo (Meteorología)
4.
Int J Biometeorol ; 64(10): 1729, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32748042

RESUMEN

The article was published bearing a typographical error to the second author name listed. The author group regret the error and the name should be referenced and credited as Jakob Zscheischler and not the former.

5.
Appl Microbiol Biotechnol ; 103(17): 7203-7215, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31256229

RESUMEN

Since polycyclic aromatic hydrocarbons (PAHs) are mutagenic, teratogenic, and carcinogenic, they are of considerable environmental concern. A biotechnological approach to remove such compounds from polluted ecosystems could be based on the use of white-rot fungi (WRF). The potential of well-adapted indigenous Ganoderma strains to degrade PAHs remains underexplored. Seven native Ganoderma sp. strains with capacity to produce high levels of laccase enzymes and to degrade synthetic dyes were investigated for their degradation potential of PAHs. The crude enzymatic extracts produced by Ganoderma strains differentially degraded the PAHs assayed (naphthalene 34-73%, phenanthrene 9-67%, fluorene 11-64%). Ganoderma sp. UH-M was the most promising strain for the degradation of PAHs without the addition of redox mediators. The PAH oxidation performed by the extracellular enzymes produced more polar and soluble metabolites such as benzoic acid, catechol, phthalic and protocatechuic acids, allowing us to propose degradation pathways of these PAHs. This is the first study in which breakdown intermediates and degradation pathways of PAHs by a native strain of Ganoderma genus were determined. The treatment of PAHs with the biomass of this fungal strain enhanced the degradation of the three PAHs. The laccase enzymes played an important role in the degradation of these compounds; however, the role of peroxidases cannot be excluded. Ganoderma sp. UH-M is a promising candidate for the bioremediation of ecosystems polluted with PAHs.


Asunto(s)
Contaminantes Ambientales/metabolismo , Ganoderma/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Biodegradación Ambiental , Fluorenos/metabolismo , Ganoderma/enzimología , Lacasa/metabolismo , Naftalenos/metabolismo , Oxidación-Reducción , Peroxidasas/metabolismo , Fenantrenos/metabolismo
6.
Microb Ecol ; 76(3): 762-770, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29492595

RESUMEN

Comprehending the decomposition process is crucial for our understanding of the mechanisms of carbon (C) sequestration in soils. The decomposition of plant biomass has been extensively studied. It revealed that extrinsic biomass properties that restrict its access to decomposers influence decomposition more than intrinsic ones that are only related to its chemical structure. Fungal biomass has been much less investigated, even though it contributes to a large extent to soil organic matter, and is characterized by specific biochemical properties. In this study, we investigated the extent to which decomposition of heathland fungal biomass was affected by its hydrophobicity (extrinsic property) and melanin content (intrinsic property). We hypothesized that, as for plant biomass, hydrophobicity would have a greater impact on decomposition than melanin content. Mineralization was determined as the mineralization of soil organic carbon (SOC) into CO2 by headspace GC/MS after inoculation by a heathland soil microbial community. Results show that decomposition was not affected by hydrophobicity, but was negatively correlated with melanin content. We argue that it may indicate that either melanin content is both an intrinsic and extrinsic property, or that some soil decomposers evolved the ability to use surfactants to access to hydrophobic biomass. In the latter case, biomass hydrophobicity should not be considered as a crucial extrinsic factor. We also explored the ecology of decomposition, melanin content, and hydrophobicity, among heathland soil fungal guilds. Ascomycete black yeasts had the highest melanin content, and hyaline Basidiomycete yeasts the lowest. Hydrophobicity was an all-or-nothing trait, with most isolates being hydrophobic.


Asunto(s)
Hongos/crecimiento & desarrollo , Melaninas/análisis , Microbiología del Suelo , Suelo/química , Biomasa , Ecosistema , Hongos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Plantas/química , Plantas/metabolismo
7.
Environ Microbiol ; 19(7): 2577-2587, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28276186

RESUMEN

The basidiomycete Suillus luteus is an important member of the ectomycorrhizal community that thrives in heavy metal polluted soils covered with pioneer pine forests. This study aimed to identify potential heavy metal chelators in S. luteus. Two metallothionein (MT) coding genes, SlMTa and SlMTb, were identified. When heterologously expressed in yeast, both SlMTa and SlMTb can rescue the Cu sensitive mutant from Cu toxicity. In S. luteus, transcription of both SlMTa and SlMTb is induced by Cu but not Cd or Zn. Several putative Cu-sensing and metal-response elements are present in the promoter sequences. These results indicate that SlMTa and SlMTb function as Cu-thioneins. Homologs of the S. luteus MTs are present in 49 species belonging to 10 different orders of the subphylum Agaricomycotina and are remarkably conserved. The length of the proteins, number and distribution of cysteine residues indicate a novel family of fungal MTs. The ubiquitous and highly conserved features of these MTs suggest that they are important for basic cellular functions in species in the subphylum Agaricomycotina.


Asunto(s)
Agaricales/genética , Basidiomycota/metabolismo , Metalotioneína/metabolismo , Micorrizas/genética , Agaricales/química , Agaricales/clasificación , Agaricales/metabolismo , Basidiomycota/química , Basidiomycota/clasificación , Basidiomycota/genética , Cadmio/metabolismo , Secuencia Conservada , Contaminación Ambiental , Metalotioneína/química , Metalotioneína/genética , Familia de Multigenes , Micorrizas/química , Micorrizas/clasificación , Micorrizas/metabolismo , Pinus/crecimiento & desarrollo , Zinc/metabolismo
8.
New Phytol ; 209(4): 1705-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26527297

RESUMEN

Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead.


Asunto(s)
Hongos/fisiología , Micorrizas/fisiología , Compuestos Orgánicos/análisis , Suelo/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Lacasa/metabolismo , Lignina/metabolismo , Oxidación-Reducción , Filogenia , Metabolismo Secundario/genética , Transcripción Genética
9.
Environ Microbiol ; 17(6): 2035-47, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24947496

RESUMEN

The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed.


Asunto(s)
Basidiomycota/metabolismo , Biodiversidad , Cadmio/metabolismo , Contaminación Ambiental , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Ascomicetos/metabolismo , Bélgica , Pinus/microbiología , Suelo/química , Contaminantes del Suelo/análisis
10.
Appl Environ Microbiol ; 82(5): 1391-1400, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26682855

RESUMEN

In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4 (+) and NO3 (-)) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability.


Asunto(s)
Basidiomycota/metabolismo , Micorrizas/metabolismo , Nitrógeno/análisis , Compuestos Orgánicos/análisis , Péptido Hidrolasas/metabolismo , Proteolisis , Suelo/química , Basidiomycota/enzimología , Glucosa/metabolismo , Micorrizas/enzimología
11.
J Fungi (Basel) ; 10(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38535176

RESUMEN

Industrial development has enhanced the release into the environment of large quantities of chemical compounds with high toxicity and limited prospects of degradation. The pollution of soil and water with xenobiotic chemicals has become a major ecological issue; therefore, innovative treatment technologies need to be explored. Fungal bioremediation is a promising technology exploiting their metabolic potential to remove or lower the concentrations of xenobiotics. In particular, white rot fungi (WRF) are unique microorganisms that show high capacities to degrade a wide range of toxic xenobiotic compounds such as synthetic dyes, chlorophenols, polychlorinated biphenyls, organophosphate pesticides, explosives and polycyclic aromatic hydrocarbons (PAHs). In this review, we address the main classes of enzymes involved in the fungal degradation of organic pollutants, the main mechanisms used by fungi to degrade these chemicals and the suitability of fungal biomass or extracellular enzymes for bioremediation. We also exemplify the role of several fungi in degrading pollutants such as synthetic dyes, PAHs and emerging pollutants such as pharmaceuticals and perfluoroalkyl/polyfluoroalkyl substances (PFASs). Finally, we discuss the existing current limitations of using WRF for the bioremediation of polluted environments and future strategies to improve biodegradation processes.

12.
Heliyon ; 10(1): e23882, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192753

RESUMEN

Growing crops on marginal lands is a promising solution to alleviate the increasing pressure on agricultural land in Europe. Such crops will however be at the same time exposed to increased drought and pathogen prevalence, on already challenging soil conditions. Some sustainable practices, such as Silicon (Si) foliar fertilization, have been proposed to alleviate these two stress factors, but have not been tested under controlled, future climate conditions. We hypothesized that Si foliar fertilization would be beneficial for crops under future climate, and would have cascading beneficial effects on ecosystem processes, as many of them are directly dependent on plant health. We tested this hypothesis by exposing spring barley growing on marginal soil macrocosms (three with, three without Si treatment) to 2070 climate projections in an ecotron facility. Using the high-capacity monitoring of the ecotron, we estimated C, water, and N budgets of every macrocosm. Additionally, we measured crop yield, the biomass of each plant organ, and characterized bacterial communities using metabarcoding. Despite being exposed to water stress conditions, plants did not produce more biomass with the foliar Si fertilization, whatever the organ considered. Evapotranspiration (ET) was unaffected, as well as water quality and bacterial communities. However, in the 10-day period following two of the three Si applications, we measured a significant increase in C sequestration, when climate conditions where significantly drier, while ET remained the same. We interpreted these results as a less significant effect of Si treatment than expected as compared with literature, which could be explained by the high CO2 levels under future climate, that reduces need for stomata opening, and therefore sensitivity to drought. We conclude that making marginal soils climate proof using foliar Si treatments may not be a sufficient strategy, at least in this type of nutrient-poor, dry, sandy soil.

13.
New Phytol ; 200(3): 875-887, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23902518

RESUMEN

Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to examine the proteolytic machinery and the uptake system of the ectomycorrhizal basidiomycete Paxillus involutus during the assimilation of organic N from various protein sources and extracts of organic matter. All substrates induced secretion of peptidase activity with an acidic pH optimum, mostly contributed by aspartic peptidases. The peptidase activity was transiently repressed by ammonium. Transcriptional analysis revealed a large number of extracellular endo- and exopeptidases. The expression levels of these peptidases were regulated in parallel with transporters and enzymes involved in the assimilation and metabolism of the released peptides and amino acids. For the first time the molecular components of the protein degradation pathways of an ectomycorrhizal fungus are described. The data suggest that the transcripts encoding these components are regulated in response to the chemical properties and the availability of the protein substrates.


Asunto(s)
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Micorrizas/metabolismo , Nitrógeno/metabolismo , Proteínas/metabolismo , Suelo/química , Compuestos de Amonio/metabolismo , Basidiomycota/enzimología , Basidiomycota/genética , Endopeptidasas/metabolismo , Exopeptidasas/metabolismo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas , Micorrizas/enzimología , Micorrizas/genética , Polímeros , Proteolisis , Microbiología del Suelo , Árboles/metabolismo
14.
Environ Microbiol ; 14(6): 1477-87, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22469289

RESUMEN

Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.


Asunto(s)
Agaricales/fisiología , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Microbiología del Suelo , Madera/metabolismo , Agaricales/crecimiento & desarrollo , Agaricales/metabolismo , Biodegradación Ambiental , Carbono/metabolismo , Ecosistema , Micorrizas/química , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Micorrizas/fisiología , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas/metabolismo , Plantas/microbiología , Simbiosis , Árboles/metabolismo , Árboles/microbiología
15.
Sci Total Environ ; 803: 149844, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525739

RESUMEN

In the EU and world-wide, agriculture is in transition. Whilst we just converted conventional farming imprinted by the post-war food demand and heavy agrochemical usage into integrated and sustainable farming with optimized production, we now have to focus on even smarter agricultural management. Enhanced nutrient efficiency and resistance to pests/pathogens combined with a greener footprint will be crucial for future sustainable farming and its wider environment. Future land use must embrace efficient production and utilization of biomass for improved economic, environmental, and social outcomes, as subsumed under the EU Green Deal, including also sites that have so far been considered as marginal and excluded from production. Another frontier is to supply high-quality food and feed to increase the nutrient density of staple crops. In diets of over two-thirds of the world's population, more than one micronutrient (Fe, Zn, I or Se) is lacking. To improve nutritious values of crops, it will be necessary to combine integrated, systems-based approaches of land management with sustainable redevelopment of agriculture, including central ecosystem services, on so far neglected sites: neglected grassland, set aside land, and marginal lands, paying attention to their connectivity with natural areas. Here we need new integrative approaches which allow the application of different instruments to provide us not only with biomass of sufficient quality and quantity in a site specific manner, but also to improve soil ecological services, e.g. soil C sequestration, water quality, habitat and soil resistance to erosion, while keeping fertilization as low as possible. Such instruments may include the application of different forms of high carbon amendments, the application of macro- and microelements to improve crop performance and quality as well as a targeted manipulation of the soil microbiome. Under certain caveats, the potential of such sites can be unlocked by innovative production systems, ready for the sustainable production of crops enriched in micronutrients and providing services within a circular economy.


Asunto(s)
Suelo , Oligoelementos , Agricultura , Productos Agrícolas , Ecosistema
17.
J Fungi (Basel) ; 7(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34829258

RESUMEN

Plants can 'catch' and mitigate airborne pollutants and are assisted by fungi inhabiting their leaves. The structure and function of the fungal communities inhabiting the phyllosphere of hornbeam trees growing in two chronically polluted areas, the oilfield of Bóbrka and the city center of Warsaw, were compared to the ones growing in one nature reserve, the Bialowieza National Park. Fungi were isolated and characterized both phylogenetically and functionally for their potential role in air pollution mitigation. Both culture-dependent (e.g., enzyme assays and tolerance tests) and culture-independent methods (e.g., ITS and shotgun sequencings) were used. Furthermore, the degradation potential of the fungi was assessed by gas chromatography mass spectrometry (GC-MS). Shotgun sequencing showed that the phyllosphere fungal communities were dominated by fungi belonging to the phylum Ascomycota. Aureobasidium was the only genus detected at the three locations with a relative abundance ≥1.0%. Among the cultivated epiphytic fungi from Bóbrka, Fusarium sporotrichioides AT11, Phoma herbarum AT15, and Lophiostoma sp. AT37 showed in vitro aromatic hydrocarbon degradation potential with laccase activities of 1.24, 3.62, and 7.2 µU L-1, respectively, and peroxidase enzymes with activities of 3.46, 2.28, and 7.49 µU L-1, respectively. Furthermore, Fusarium sporotrichioides AT11 and Phoma herbarum AT15 tolerated exposure to airborne naphthalene and benzene. Lophiostoma sp. AT37 was the most tolerant to exposure to these pollutants, in line with being the best potential aromatic hydrocarbon degrader isolated in this study.

18.
Microb Ecol ; 60(2): 331-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20577876

RESUMEN

Liming is used to counteract forest decline induced by soil acidification. It consists of Ca and Mg input to forest soil and not only restores tree mineral nutrition but also modifies the availability of nutrients in soil. Ectomycorrhizal (ECM) fungi are involved in mineral nutrient uptake by trees and can recover them through dissolution of mineral surface. Oxalate and siderophore secretion are considered as the main agents of mineral weathering by ECMs. Here, we studied the effects of liming on the potential oxalate secretion and iron complexation by individual beech ECM root tips. Results show that freshly excised Lactarius subdulcis root tips from limed plots presented a high potential oxalate exudation of 177 µM tip(-1) h(-1). As this ECM species distribution is very dense, it is likely that, in the field, oxalate concentrations in the vicinity of its clusters could be very high. This points out that not only extraradical mycelium but also ECM root tips of certain species can contribute significantly to mineral weathering. Nonmetric multidimensional scaling (NMDS) separated potential oxalate production by ECM root tips in limed and untreated plots, and this activity was mainly driven by L. subdulcis ECMs, but NMDS on potential activity of iron mobilization by ECM root tips did not show a difference between limed and untreated plots. As the mean oxalate secretion did not significantly correlated with the mean iron mobilization by ECM morphotype, we conclude that iron complexation was due to either other organic acids or to siderophores.


Asunto(s)
Compuestos de Calcio/química , Fagus/microbiología , Hierro/metabolismo , Micorrizas/metabolismo , Ácido Oxálico/metabolismo , Óxidos/química , Quelantes/metabolismo , ADN de Hongos/genética , Meristema/microbiología , Micelio/metabolismo , Micorrizas/genética , Sideróforos/metabolismo , Suelo/química , Microbiología del Suelo , Árboles/microbiología
19.
Mycorrhiza ; 19(7): 493-500, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19421790

RESUMEN

Liming (Ca-Mg soil amendment) is a forestry practice used to correct soil acidification and restore health and productivity in declining stands. Liming is known to modify tree mineral nutrition beyond the sole Ca and Mg. We hypothesized that liming also modifies the very functioning of the tree absorbing system (that is the ectomycorrhizal fine roots) in a way that facilitates the mobilization of mineral nutrients, particularly those entrapped in soil organic matter. This hypothesis has been tested here in beech and Norway spruce stands in North-Eastern France. In autumn, we compared the ectomycorrhizal community structure and the enzymatic profiles of ectomycorrhizal root tips in limed and untreated plots by measuring the activities of eight enzymes related to the degradation of soil organic matter. The results show that the ectomycorrhizal community responds to the Ca-Mg amendment and to the resulting soil modifications by modified enzyme activity profiles and ability to mobilize nutrients from soil organic matter. The effects of liming on the belowground functioning of the tree stands result essentially from specialized ECM fungal species such as Clavulina cristata (with strong glucuronidase activity), Lactarius subdulcis (with strong laccase activity) or Xerocomus pruinatus (with strong leucine aminopeptidase activity).


Asunto(s)
Agricultura Forestal , Proteínas Fúngicas/metabolismo , Hongos/enzimología , Micorrizas/enzimología , Simbiosis , Árboles/microbiología , Agricultura Forestal/métodos , Hongos/fisiología , Micorrizas/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Suelo/análisis , Árboles/genética , Árboles/fisiología
20.
Front Microbiol ; 10: 2251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681189

RESUMEN

Ectomycorrhizal (ECM) fungi are important root symbionts of trees, as they can have significant effects on the nutrient status of plants. In polluted environments, particular ECM fungi can protect their host tree from Zn toxicity by restricting the transfer of Zn while securing supply of essential nutrients. However, mechanisms and regulation of cellular Zn homeostasis in ECM fungi are largely unknown, and it remains unclear how ECM fungi affect the Zn status of their host plants. This study focuses on the characterization of a ZIP (Zrt/IrtT-like protein) transporter, SlZRT2, in the ECM fungus Suillus luteus, a common root symbiont of young pine trees. SlZRT2 is predicted to encode a plasma membrane-located Zn importer. Heterologous expression of SlZRT2 in yeast mutants with impaired Zn uptake resulted in a minor impact on cellular Zn accumulation and growth. The SlZRT2 gene product showed a dual localization and was detected at the plasma membrane and perinuclear region. S. luteus ZIP-family Zn uptake transporters did not show the potential to induce trehalase activity in yeast and to function as Zn sensors. In response to excess environmental Zn, gene expression analysis demonstrated a rapid but minor and transient decrease in SlZRT2 transcript level. In ECM root tips, the gene is upregulated. Whether this regulation is due to limited Zn availability at the fungal-plant interface or to developmental processes is unclear. Altogether, our results suggest a function for SlZRT2 in cellular Zn redistribution from the ER next to a putative role in Zn uptake in S. luteus.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda