Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 513(7517): 224-8, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25156258

RESUMEN

The Younger Dryas stadial, a cold event spanning 12,800 to 11,500 years ago, during the last deglaciation, is thought to coincide with the last major glacial re-advance in the tropical Andes. This interpretation relies mainly on cosmic-ray exposure dating of glacial deposits. Recent studies, however, have established new production rates for cosmogenic (10)Be and (3)He, which make it necessary to update all chronologies in this region and revise our understanding of cryospheric responses to climate variability. Here we present a new (10)Be moraine chronology in Colombia showing that glaciers in the northern tropical Andes expanded to a larger extent during the Antarctic cold reversal (14,500 to 12,900 years ago) than during the Younger Dryas. On the basis of a homogenized chronology of all (10)Be and (3)He moraine ages across the tropical Andes, we show that this behaviour was common to the northern and southern tropical Andes. Transient simulations with a coupled global climate model suggest that the common glacier behaviour was the result of Atlantic meridional overturning circulation variability superimposed on a deglacial increase in the atmospheric carbon dioxide concentration. During the Antarctic cold reversal, glaciers advanced primarily in response to cold sea surface temperatures over much of the Southern Hemisphere. During the Younger Dryas, however, northern tropical Andes glaciers retreated owing to abrupt regional warming in response to reduced precipitation and land-surface feedbacks triggered by a weakened Atlantic meridional overturning circulation. Conversely, glacier retreat during the Younger Dryas in the southern tropical Andes occurred as a result of progressive warming, probably influenced by an increase in atmospheric carbon dioxide. Considered with evidence from mid-latitude Andean glaciers, our results argue for a common glacier response to cold conditions in the Antarctic cold reversal exceeding that of the Younger Dryas.


Asunto(s)
Frío , Cubierta de Hielo , Berilio/análisis , Clima , Colombia , Helio/análisis , Isótopos/análisis
2.
Sci Rep ; 6: 32396, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580801

RESUMEN

The ongoing retreat of glaciers at southern sub-polar latitudes is particularly rapid and widespread. Akin to northern sub-polar latitudes, this retreat is generally assumed to be linked to warming. However, no long-term and well-constrained glacier modeling has ever been performed to confirm this hypothesis. Here, we model the Cook Ice Cap mass balance on the Kerguelen Islands (Southern Indian Ocean, 49°S) since the 1850s. We show that glacier wastage during the 2000s in the Kerguelen was among the most dramatic on Earth. We attribute 77% of the increasingly negative mass balance since the 1960s to atmospheric drying associated with a poleward shift of the mid-latitude storm track. Because precipitation modeling is very challenging for the current generation of climate models over the study area, models incorrectly simulate the climate drivers behind the recent glacier wastage in the Kerguelen. This suggests that future glacier wastage projections should be considered cautiously where changes in atmospheric circulation are expected.

3.
Science ; 311(5766): 1449-52, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16527977

RESUMEN

The Scandinavian Ice Sheet (SIS) was an important component of the global ice sheet system during the last glaciation, but the timing of its growth to or retreat from its maximum extent remains poorly known. We used 115 cosmogenic beryllium-10 ages and 70 radiocarbon ages to constrain the timing of three substantial ice-margin fluctuations of the SIS between 25,000 and 12,000 years before the present. The age of initial deglaciation indicates that the SIS may have contributed to an abrupt rise in global sea level. Subsequent ice-margin fluctuations identify opposite mass-balance responses to North Atlantic climate change, indicating differing ice-sheet sensitivities to mean climate state.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda