Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Plant Dis ; 107(12): 3763-3772, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37386702

RESUMEN

Iris severe mosaic virus (ISMV, Potyviridae) can threaten the sustainability of iris production and the marketability of the plants. Effective intervention and control strategies require rapid and early detection of viral infections. The wide range of viral symptoms, from asymptomatic to severe chlorosis of the leaves, renders diagnosis solely based on visual indicators ineffective. A nested PCR-based diagnostic assay was developed for the reliable detection of ISMV in iris leaves and in rhizomes. Considering the genetic variability of ISMV, two primer pairs were designed to detect the highly conserved 3' untranslated region (UTR) of the viral genomic RNA. The specificity of the primer pairs was confirmed against four other potyviruses. The sensitivity of detection was enhanced by one order of magnitude using diluted cDNA and a nested approach. Nested PCR facilitated detecting ISMV on field-grown samples beyond the capabilities of a currently available immunological test and in iris rhizome, which would facilitate ensuring clean stock is planted. This approach dramatically improves the detection threshold of ISMV on potentially low virus titer samples. The study provides a practical, accurate, and sensitive tool for the early detection of a deleterious virus that infects a popular ornamental and landscape plant.


Asunto(s)
Potyvirus , Regiones no Traducidas 3'/genética , Prevalencia , Potyvirus/genética , Reacción en Cadena de la Polimerasa , ARN Viral/genética , Plantas
2.
J Appl Microbiol ; 132(4): 3089-3110, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35026058

RESUMEN

AIM: The newly defined species Pectobacterium parmentieri has emerged as an aggressive pathogen that causes soft rot and blackleg diseases on potato and has been widely disseminated across the globe, jeopardizing the productivity and potato food safety. The implementation of a fast and accurate detection tool is imperative to control, monitor and prevent further spread of these pathogens. The objective of this work was to develop a specific and sensitive multiplex TaqMan qPCR to detect P. parmentieri and distinguish it from all known Pectobacterium species. A universal internal control was included to enhance the reliability of the assay. METHODS AND RESULTS: A comparative genomics approach was used to identify O-acetyltransferase and the XRE family transcriptional regulator as specific targets for primers/probe design for the detection of the Pectobacterium genus and P. parmentieri, respectively. Specificity was assessed with 35 and 25 strains included in the inclusivity and exclusivity panels, respectively, isolated from different geographical locations and sources. The assay specifically detected all 35 strains of Pectobacterium sp. and all 15 P. parmentieri strains. No cross-reactivity was detected during assay validation. Our assay detected up to 10 fg genomic DNA and 1 CFU ml-1 bacterial culture. No change in the detection threshold (1 CFU ml-1 ) was observed in spiked assays after adding host tissue to the reactions. The assay was validated with naturally and artificially infected host tissues and soil rhizosphere samples. All infected plant samples containing the target pathogens were accurately amplified. CONCLUSION: The presented multiplex TaqMan qPCR diagnostic assay is highly specific, sensitive, reliable for the detection of Pectobacterium species and P. parmentieri with no false positives or false negatives. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed assay can be adopted for multiple purposes such as seed certification programmes, surveillance, biosecurity, microbial forensics, quarantine, border protection, inspections and epidemiology.


Asunto(s)
Pectobacterium , Solanum tuberosum , Genómica , Pectobacterium/genética , Enfermedades de las Plantas/microbiología , Reproducibilidad de los Resultados , Solanum tuberosum/microbiología
3.
Phytopathology ; 107(6): 749-757, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28134592

RESUMEN

Brachypodium distachyon is a C3 grass that is an attractive model host system for studying pathogenicity of major turfgrass pathogens due to its genetic similarity to many cool-season turfgrasses. Infection assays with two or more isolates of the casual agents of dollar spot, brown patch, and Microdochium patch resulted in compatible interactions with B. distachyon inbred line Bd21-3. The symptoms produced by these pathogens on Bd21-3 closely resembled those observed on the natural turfgrass host (creeping bentgrass), demonstrating that B. distachyon is susceptible to the fungal pathogens that cause dollar spot, brown patch, and Microdochium patch on turfgrasses. The interaction between Sclerotinia homoeocarpa isolates and Brachypodium ecotypes was also investigated. Interestingly, differential responses of these ecotypes to S. homoeocarpa isolates was found, particularly when comparing B. distachyon to B. hybridum ecotypes. Taken together, these findings demonstrate that B. distachyon can be used as a model host system for these turfgrass diseases and leveraged for studies of molecular mechanisms contributing to host resistance.


Asunto(s)
Agrostis/microbiología , Ascomicetos/fisiología , Brachypodium/microbiología , Modelos Biológicos , Enfermedades de las Plantas/microbiología , Rhizoctonia/fisiología , Ascomicetos/patogenicidad , Ecotipo , Interacciones Huésped-Patógeno , Rhizoctonia/patogenicidad
4.
Front Microbiol ; 11: 1732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849370

RESUMEN

Dollar spot is caused by the fungus Clarireedia jacksonii and is the most common disease of golf course turfgrass in temperate climates. Oxalic acid (OA) is an important pathogenicity factor in other fungal plant pathogens, such as the dicot pathogen Sclerotinia sclerotiorum, but its role in C. jacksonii pathogenicity on monocot hosts remains unclear. Herein, we assess fungal growth, OA concentration, and pH change in potato dextrose broth (PDB) following incubation of C. jacksonii. In addition, OA production by C. jacksonii and S. sclerotiorum was compared in PDB amended with creeping bentgrass or common plant cell wall components (cellulose, lignin, pectin, or xylan). Our results show that OA production is highly dependent on the environmental pH, with twice as much OA produced at pH 7 than pH 4 and a corresponding decrease in PDB pH from 7 to 5 following 96 h of C. jacksonii incubation. In contrast, no OA was produced or changes in pH observed when C. jacksonii was incubated in PDB at a pH of 4. Interestingly, C. jacksonii increased OA production in response to PDB amended with creeping bentgrass tissue and the cell wall component xylan, a major component of grass cell walls. S. sclerotiorum produced large amounts of OA relative to C. jacksonii regardless of treatment, and no treatment increased OA production by this fungus, though pectin suppressed S. sclerotiorum's OA production. These results suggest that OA production by C. jacksonii is reliant on host specific components within the infection court, as well as the ambient pH of the foliar environment during its pathogenic development.

5.
PLoS One ; 9(10): e110897, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333928

RESUMEN

Dollar spot is the most economically important disease of amenity turfgrasses in the United States, yet little is known about the source of primary inoculum for this disease. With the exception of a few isolates from the United Kingdom, Sclerotinia homoeocarpa, the causal agent of dollar spot, does not produce spores. Consequently, it was assumed that overwintering of this organism in soil, thatch, and plant debris provides primary inoculum for dollar spot epidemics. Overwintering of S. homoeocarpa in roots and shoots of symptomatic and asymptomatic creeping bentgrass turfgrass was quantified over the course of a three-year field experiment. Roots did not consistently harbor S. homoeocarpa, whereas S. homoeocarpa was isolated from 30% of symptomatic shoots and 10% of asymptomatic shoots in the spring of two out of three years. The presence of stroma-like pathogen material on leaf blades was associated with an increase in S. homoeocarpa isolation and colony diameter at 48 hpi. Commercial seed has also been hypothesized to be a potential source of initial inoculum for S. homoeocarpa. Two or more commercial seed lots of six creeping bentgrass cultivars were tested for contamination with S. homoeocarpa using culture-based and molecular detection methods. A viable, pathogenic isolate of S. homoeocarpa was isolated from one commercial seed lot and contamination of this lot was confirmed with nested PCR using S. homoeocarpa specific primers. A sensitive nested PCR assay detected S. homoeocarpa contamination in eight of twelve (75%) commercial seed lots. Seed source, but not cultivar or resistance to dollar spot, influenced contamination by S. homoeocarpa. Overall, this research suggests that seeds are a potential source of initial inoculum for dollar spot epidemics and presents the need for further research in this area.


Asunto(s)
Agrostis/microbiología , Ascomicetos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Semillas/microbiología , Agrostis/crecimiento & desarrollo , Ascomicetos/patogenicidad , Hojas de la Planta/microbiología , Semillas/crecimiento & desarrollo , Estados Unidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda