Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Acta Oncol ; 58(12): 1699-1705, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31742490

RESUMEN

Background: To avoid aggressive treatments at the end-of-life and to provide palliative care (PC), physicians need to terminate futile anti-cancer treatments and define the palliative goal of the treatment in time. This single center study assesses the practices used to make the decision that leads to treatment with a palliative goal, i.e., the PC decision and its effect on anti-cancer treatments at the end of life.Material and methods: Patients with a cancer diagnosis treated in tertiary hospital during 1st January 2013 - 31st December 2014 and deceased by the end of 2014 were identified in the hospital database (N = 2737). Of these patients, 992 were randomly selected for this study. The PC decision was screened from patient records, i.e., termination of cancer-specific treatments and a focus on symptom-centered PC.Results: The PC decision was defined in 82% of the patients during the last year of life (49% >30 days and 33% ≤30 days before death, 18% with no decision). The median time from the decision to death was 46 days. Systemic cancer therapy was given during the last month of life in 1%, 36% and 38% (p < .001) and radiotherapy 22%, 40% and 31% (p = .03) cases, respectively; referral to a PC unit was made in 62%, 22% and 11%, respectively (p < .001). In logistic regression analyses younger age, shorter duration of the disease trajectory and type of cancer (e.g., breast cancer) were associated with a lack or late timing of the PC decision.Conclusion: The decision to initiate a palliative goal for the treatment was frequently made for cancer patients but occurred late for every third patient. Younger age and certain cancer types were associated with late PC decisions, thus leading to anti-cancer treatments continuing until close to the death with low access to a PC unit.


Asunto(s)
Toma de Decisiones Clínicas , Neoplasias/terapia , Cuidados Paliativos , Cuidado Terminal , Factores de Edad , Anciano , Análisis de Varianza , Estudios de Cohortes , Femenino , Finlandia , Humanos , Masculino , Neoplasias/mortalidad , Centros de Atención Terciaria , Factores de Tiempo
2.
Environ Microbiol ; 20(10): 3616-3628, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30003649

RESUMEN

Climate change along with anthropogenic activities changes biogeochemical conditions in lake ecosystems, modifying the sediment microbial communities. Wastewater effluents introduce nutrients and organic material but also novel microbes to lake ecosystems, simulating forthcoming increases in catchment loadings. In this work, we first used 16s rRNA gene sequencing to study how the overall sediment microbial community responds to wastewater in six boreal lakes. To examine forthcoming changes in the lake biogeochemistry, we focused on the ammonia-oxidizing archaea (AOA) and bacteria (AOB), and examined their functional and compositional community response to wastewater. Although we found the least diverse and least resistant prokaryotic communities from the most wastewater-influenced sediments, the community changed fast toward the natural composition with the diminishing influence of wastewater. Each lake hosted a unique resistant AOA community, while AOB communities were adapting, responding to environmental conditions as well as receiving new members from WWTPs. In general, AOB dominated in numbers in wastewater-influenced sediments, while the ratio between AOA and AOB increased when moving toward pristine conditions. Our results suggest that although future climate-change-driven increases in nutrient loading and microbial migration might significantly disrupt lake sediment microbiomes, they can promote nitrification through adapting and abundant AOB communities.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Lagos/microbiología , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Betaproteobacteria/genética , Ecosistema , Sedimentos Geológicos/análisis , Nitrificación , Nutrientes/metabolismo , Oxidación-Reducción , Filogenia
3.
Environ Sci Technol ; 52(22): 13343-13350, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30358987

RESUMEN

Constructed wetlands provide cost-efficient nutrient removal, with minimal input of human labor and energy, and their number is globally increasing. However, in northern latitudes, wetlands are rarely utilized, because their nutrient removal efficiency has been questioned due to the cold climate. Here, we studied nutrient retention and nitrogen removal in a boreal constructed wetland (4-ha) receiving treated nitrogen-rich wastewater. On a yearly basis, most of the inorganic nutrients were retained by the wetland. The highest retention efficiency was found during the ice-free period, being 79% for ammonium-nitrogen (NH4+-N), 71% for nitrate-nitrogen (NO3--N), and 88% for phosphate-phosphorus (PO43--P). Wetland also acted as a buffer zone during the disturbed nitrification process of the wastewater treatment plant. Denitrification varied between 106 and 252 mg N m-2 d-1 during the ice-free period. During the ice-cover period, total gaseous nitrogen removal was 147 mg N m-2 d-1, from which 66% was removed as N2, 28.5% as N2O through denitrification, and 5.5% as N2 through anammox. Nearly 2600 kg N y-1 was estimated to be removed through microbial gaseous N-production which equaled 72% of NO3--N and 60% of TN yearly retention in the wetland. The wetland retained nutrients even in winter, when good oxygen conditions prevailed under ice. The results suggest that constructed wetlands are an efficient option for wastewater nitrogen removal and nutrient retention also in cold climates.


Asunto(s)
Aguas Residuales , Humedales , Clima Frío , Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos
4.
J Ind Microbiol Biotechnol ; 44(1): 35-47, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27826724

RESUMEN

Molecular monitoring of bacterial communities can explain and predict the stability of bioprocesses in varying physicochemical conditions. To study methanol-fed denitrification biofilters of municipal wastewater treatment plants, bacterial communities of two full-scale biofilters were compared through fingerprinting and sequencing of the 16S rRNA genes. Additionally, 16S rRNA gene fingerprinting was used for 10-week temporal monitoring of the bacterial community in one of the biofilters. Combining the data with previous study results, the family Methylophilaceae and genus Hyphomicrobium were determined as suitable target groups for monitoring. An increase in the relative abundance of Hyphomicrobium-related biomarkers occurred simultaneously with increases in water flow, NO x- load, and methanol addition, as well as a higher denitrification rate, although the dominating biomarkers linked to Methylophilaceae showed an opposite pattern. The results indicate that during increased loading, stability of the bioprocess is maintained by selection of more efficient denitrifier populations, and this progress can be analyzed using simple molecular fingerprinting.


Asunto(s)
Desnitrificación , Hyphomicrobium/química , Methylophilaceae/química , ARN Ribosómico 16S/genética , Aguas del Alcantarillado/microbiología , Clasificación , Filtración , Metanol , Filogenia , Temperatura , Aguas Residuales , Agua/química
5.
J Ind Microbiol Biotechnol ; 43(12): 1647-1657, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27696315

RESUMEN

Which bacterial taxonomic groups can be used in monitoring saline water methanol-utilizing denitrification and whether nitrate is transformed into N2 in the process are unclear. Therefore, methylotrophic bacterial communities of two efficiently functioning (nitrate/nitrite reduction was 63-96 %) tropical and cool seawater reactors at a public aquarium were investigated with clone library analysis and 454 pyrosequencing of the 16S rRNA genes. Transformation of nitrate into N2 was confirmed using 15N labeling in incubation of carrier material from the tropical reactor. Combining the data with previous study results, Methylophaga and Hyphomicrobium were determined to be suitable target genera for monitoring the function of saline water methanol-fed denitrification systems. However, monitoring was not possible at the single species level. Interestingly, potential nitrate-reducing methylotrophs within Filomicrobium and closely related Fil I and Fil II clusters were detected in the reactors suggesting that they also contributed to methylotrophic denitrification in the saline environment.


Asunto(s)
Desnitrificación , Gammaproteobacteria/fisiología , Hyphomicrobium/fisiología , Metanol/metabolismo , Agua de Mar/microbiología , Reactores Biológicos , Microbiota/genética , Tipificación Molecular , Nitratos/análisis , Nitratos/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/análisis , Calidad del Agua
6.
Physiol Meas ; 45(5)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38749432

RESUMEN

Objective.Maximal O2uptake (V˙O2max) reflects the individual's maximal rate of O2transport and utilization through the integrated whole-body pathway composed of the lungs, heart, blood, circulation, and metabolically active tissues. As such,V˙O2maxis strongly associated with physical capacity as well as overall health and thus acts as one predictor of physical performance and as a vital sign in determination of status and progress of numerous clinical conditions. Quantifying the contribution of single parts of the multistep O2pathway toV˙O2maxprovides mechanistic insights into exercise (in)tolerance and into therapy-, training-, or disuse-induced adaptations at individual or group levels. We developed a desktop application (Helsinki O2Pathway Tool-HO2PT) to model numerical and graphical display of the O2pathway based on the 'Wagner diagram' originally formulated by Peter D. Wagner and his colleagues.Approach.The HO2PT was developed and programmed in Python to integrate the Fick principle and Fick's law of diffusion into a computational system to import, calculate, graphically display, and export variables of the Wagner diagram.Main results.The HO2PT models O2pathway both numerically and graphically according to the Wagner diagram and pertains to conditions under which the mitochondrial oxidative capacity of metabolically active tissues exceeds the capacity of the O2transport system to deliver O2to the mitochondria. The tool is based on the Python open source code and libraries and freely and publicly available online for Windows, macOS, and Linux operating systems.Significance.The HO2PT offers a novel functional and demonstrative platform for those interested in examiningV˙O2maxand its determinants by using the Wagner diagram. It will improve access to and usability of Wagner's and his colleagues' integrated physiological model and thereby benefit users across the wide spectrum of contexts such as scientific research, education, exercise testing, sports coaching, and clinical medicine.


Asunto(s)
Oxígeno , Oxígeno/metabolismo , Humanos , Modelos Biológicos , Gráficos por Computador , Consumo de Oxígeno/fisiología , Programas Informáticos
7.
J Sports Med Phys Fitness ; 64(4): 334-347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213267

RESUMEN

BACKGROUND: Physiological mechanisms explaining why cardiorespiratory fitness (CRF) predicts cardiovascular morbidity and mortality are incompletely understood. We examined if CRF modifies vagally mediated heart rate variability (HRV) during acute physical or psychosocial stress or night-time sleep in adults with cardiovascular risk factors. METHODS: Seventy-eight adults (age 56 years [IQR 50-60], 74% female, body mass index 28 kg/m2 [IQR 25-31]) with frequent cardiovascular risk factors participated in this cross-sectional study. They went through physical (treadmill cardiopulmonary exercise test [CPET]) and psychosocial (Trier Social Stress Test for Groups [TSST-G]) stress tests and night-time sleep monitoring (polysomnography). Heart rate (HR) and vagally mediated HRV (root mean square of successive differences between normal R-R intervals [RMSSD]) were recorded during the experiments and analyzed by taking account of potential confounders. RESULTS: CRF (peak O2 uptake) averaged 99% (range 78-126) in relation to reference data. From pre-rest to moderate intensities during CPET and throughout TSST-G, HR did not differ between participants with CRF below median (CRFlower) and CRF equal to or above median (CRFhigher), whereas CRFhigher had higher HRV than CRFlower, and CRF correlated positively with HRV in all participants. Meanwhile, CRF had no independent associations with HR or HRV levels during slow-wave sleep, the presence of metabolic syndrome was not associated with recorded HR or HRV levels, and single factors predicted HRV responsiveness independently only to limited extents. CONCLUSIONS: CRF is positively associated with prevailing vagally mediated HRV at everyday levels of physical and psychosocial stress in adults with cardiovascular risk factors.


Asunto(s)
Capacidad Cardiovascular , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Capacidad Cardiovascular/fisiología , Frecuencia Cardíaca/fisiología , Estudios Transversales , Prueba de Esfuerzo , Corazón , Aptitud Física/fisiología
8.
Microbiol Spectr ; 11(6): e0174223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37861333

RESUMEN

IMPORTANCE: Aerobic gammaproteobacterial methanotrophic bacteria (gMOB) play an important role in reducing methane emissions from freshwater ecosystems. In hypoxic conditions prevalent near oxic-anoxic interfaces, gMOB potentially shift their metabolism to fermentation, resulting in the conversion of methane to extracellular organic acids, which would serve as substrates for non-methanotrophic microbes. We intended to assess the prevalence of fermentation traits among freshwater gMOB. Therefore, we isolated two strains representing relevant freshwater gMOB genera, i.e., Methylovulum and Methylomonas, from boreal lakes, experimentally showed that they convert methane to organic acids and demonstrated via metagenomics that the fermentation potential is widely dispersed among lake and pond representatives of these genera. Combined with our recent study showing coherent results from another relevant freshwater gMOB genus, i.e., Methylobacter, we conclude that the conversion of methane to organic acids is a widely found trait among freshwater gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs.


Asunto(s)
Ecosistema , Lagos , Lagos/microbiología , Estanques , Metano/metabolismo , Bacterias , Ácidos
9.
Microbiol Spectr ; : e0195523, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698418

RESUMEN

Eutrophication increases the input of labile, algae-derived, organic matter (OM) into lake sediments. This potentially increases methane (CH4) emissions from sediment to water through increased methane production rates and decreased methane oxidation efficiency in sediments. However, the effect of OM lability on the structure of methane oxidizing (methanotrophic) and methane producing (methanogenic) microbial communities in lake sediments is still understudied. We studied the vertical profiles of the sediment and porewater geochemistry and the microbial communities (16S rRNA gene amplicon sequencing) at five profundal stations of an oligo-mesotrophic, boreal lake (Lake Pääjärvi, Finland), varying in surface sediment OM sources (assessed via sediment C:N ratio). Porewater profiles of methane, dissolved inorganic carbon (DIC), acetate, iron, and sulfur suggested that sites with more autochthonous OM showed higher overall OM lability, which increased remineralization rates, leading to increased electron acceptor (EA) consumption and methane emissions from sediment to water. When OM lability increased, the abundance of anaerobic nitrite-reducing methanotrophs (Candidatus Methylomirabilis) relative to aerobic methanotrophs (Methylococcales) in the methane oxidation layer of sediment surface decreased, suggesting that Methylococcales were more competitive than Ca. Methylomirabilis under decreasing redox conditions and increasing methane availability due to their more diverse metabolism (fermentation and anaerobic respiration) and lower affinity for methane. Furthermore, when OM lability increased, the abundance of methanotrophic community in the sediment surface layer, especially Ca. Methylomirabilis, relative to the methanogenic community decreased. We conclude that increasing input of labile OM, subsequently affecting the redox zonation of sediments, significantly modifies the methane producing and consuming microbial community of lake sediments. IMPORTANCE Lakes are important natural emitters of the greenhouse gas methane (CH4). It has been shown that eutrophication, via increasing the input of labile organic matter (OM) into lake sediments and subsequently affecting the redox conditions, increases methane emissions from lake sediments through increased sediment methane production rates and decreased methane oxidation efficiency. However, the effect of organic matter lability on the structure of the methane-related microbial communities of lake sediments is not known. In this study, we show that, besides the activity, also the structure of lake sediment methane producing and consuming microbial community is significantly affected by changes in the sediment organic matter lability.

10.
Sci Total Environ ; 901: 165421, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37474057

RESUMEN

Managed boreal peatlands are widespread and economically important, but they are a large source of greenhouse gases (GHGs). Peatland GHG emissions are related to soil water-table level (WT), which controls the vertical distribution of aerobic and anaerobic processes and, consequently, sinks and sources of GHGs in soils. On forested peatlands, selection harvesting reduces stand evapotranspiration and it has been suggested that the resulting WT rise decreases soil net emissions, while the tree growth is maintained. We monitored soil concentrations of CO2, CH4, N2O and O2 by depth down to 80 cm, and CO2 and CH4 fluxes from soil in two nutrient-rich Norway spruce dominated peatlands in Southern Finland to examine the responses of soil GHG dynamics to WT rise. Selection harvesting raised WT by 14 cm on both sites, on average, mean WTs of the monitoring period being 73 cm for unharvested control and 59 cm for selection harvest. All soil gas concentrations were associated with proximity to WT. Both CH4 and CO2 showed remarkable vertical concentration gradients, with high values in the deepest layer, likely due to slow gas transfer in wet peat. CH4 was efficiently consumed in peat layers near and above WT where it reached sub-atmospheric concentrations, indicating sustained oxidation of CH4 from both atmospheric and deeper soil origins also after harvesting. Based on soil gas concentration data, surface peat (top 25/30 cm layer) contributed most to the soil-atmosphere CO2 fluxes and harvesting slightly increased the CO2 source in deeper soil (below 45/50 cm), which could explain the small CO2 flux differences between treatments. N2O production occurred above WT, and it was unaffected by harvesting. Overall, the WT rise obtained with selection harvesting was not sufficient to reduce soil GHG emissions, but additional hydrological regulation would have been needed.

11.
ISME Commun ; 2(1): 85, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37938755

RESUMEN

Lakes and ponds are considered as a major natural source of CH4 emissions, particularly during the ice-free period in boreal ecosystems. Aerobic methane-oxidizing bacteria (MOB), which utilize CH4 using oxygen as an electron acceptor, are one of the dominant microorganisms in the CH4-rich water columns. Metagenome-assembled genomes (MAGs) have revealed the genetic potential of MOB from boreal aquatic ecosystems for various microaerobic/anaerobic metabolic functions. However, experimental proof of these functions, i.e., organic acid production via fermentation, by lake MOB is lacking. In addition, psychrophilic (i.e., cold-loving) MOB and their CH4-oxidizing process have rarely been investigated. In this study, we isolated, provided a taxonomic description, and analyzed the genome of Methylobacter sp. S3L5C, a psychrophilic MOB, from a boreal lake in Finland. Based on phylogenomic comparisons to MAGs, Methylobacter sp. S3L5C represented a ubiquitous cluster of Methylobacter spp. in boreal aquatic ecosystems. At optimal temperatures (3-12 °C) and pH (6.8-8.3), the specific growth rates (µ) and CH4 utilization rate were in the range of 0.018-0.022 h-1 and 0.66-1.52 mmol l-1 d-1, respectively. In batch cultivation, the isolate could produce organic acids, and the concentrations were elevated after replenishing CH4 and air into the headspace. Up to 4.1 mM acetate, 0.02 mM malate, and 0.07 mM propionate were observed at the end of the test under optimal operational conditions. The results herein highlight the key role of Methylobacter spp. in regulating CH4 emissions and their potential to provide CH4-derived organic carbon compounds to surrounding heterotrophic microorganisms in cold ecosystems.

12.
Data Brief ; 45: 108689, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36426084

RESUMEN

Psychrophilic methanotrophic bacteria are abundant and play an important role in methane removal in cold methanogenic environments, such as boreal and arctic terrestrial and aquatic ecosystems. They could be also applied in the bioconversion of biogas and natural gas into value-added products (e.g., chemicals and single-cell protein) in cold regions. Hence, isolation and genome sequencing of psychrophilic methanotrophic bacteria are needed to provide important data on their functional capabilities. However, psychrophilic methanotroph isolates and consequently their genome sequences are rare. Fortunately, Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures GmbH was able to revive the long-extinct pure culture of a psychrophilic methanotrophic tundra soil isolate, Methylobacter psychrophilus Z-0021 (DSM 9914), from their stocks during 2022. Here, we describe the de novo assembled genome sequence of Methylobacter psychrophilus Z-0021 comprising a total of 4691082 bp in 156 contigs with a G+C content of 43.1% and 4074 coding sequences. The preliminary genome annotation analysis of Z-0021 identified genes encoding oxidation of methane, methanol and formaldehyde, assimilation of carbon and nitrate, and N2 fixation. In pairwise genome-to-genome comparisons with closely related methanotrophic strains, the strain Z-0021 had an average nucleotide identity (ANI) of 92.9% and 78.2% and a digital DNA-DNA hybridization (dDDH) value of 50.6% and 22% with a recently described psychrophilic, lake isolate, Methylobacter sp. S3L5C and a psychrotrophic, arctic wetland soil isolate, Methylobacter tundripaludum SV96, respectively. In addition, the respective similarities between genomes of the strains S3L5C and SV96 were 78.1% ANI and 21.8% dDDH. Comparison to widely used ANI and dDDH thresholds to delineate unique species (<95% ANI and <70% dDDH) suggests that Methylobacter psychrophilus Z-0021, Methylobacter tundripaludum SV96 and Methylobacter sp. S3L5C are different species. The draft genome of Z-0021 has been deposited at GenBank under the accession JAOEGU000000000.

13.
Front Microbiol ; 13: 874627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663866

RESUMEN

Methane (CH4) is a sustainable carbon feedstock for value-added chemical production in aerobic CH4-oxidizing bacteria (methanotrophs). Under substrate-limited (e.g., oxygen and nitrogen) conditions, CH4 oxidation results in the production of various short-chain organic acids and platform chemicals. These CH4-derived products could be broadened by utilizing them as feedstocks for heterotrophic bacteria. As a proof of concept, a two-stage system for CH4 abatement and 1-alkene production was developed in this study. Type I and Type II methanotrophs, Methylobacter tundripaludum SV96 and Methylocystis rosea SV97, respectively, were investigated in batch tests under different CH4 and air supplementation schemes. CH4 oxidation under either microaerobic or aerobic conditions induced the production of formate, acetate, succinate, and malate in M. tundripaludum SV96, accounting for 4.8-7.0% of consumed carbon from CH4 (C-CH4), while M. rosea SV97 produced the same compounds except for malate, and with lower efficiency than M. tundripaludum SV96, accounting for 0.7-1.8% of consumed C-CH4. For the first time, this study demonstrated the use of organic acid-rich spent media of methanotrophs cultivating engineered Acinetobacter baylyi ADP1 'tesA-undA cells for 1-alkene production. The highest yield of 1-undecene was obtained from the spent medium of M. tundripaludum SV96 at 68.9 ± 11.6 µmol mol Csubstrate -1. However, further large-scale studies on fermenters and their optimization are required to increase the production yields of organic acids in methanotrophs.

14.
Int J Disaster Risk Reduct ; 82: 103333, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36277812

RESUMEN

Background: The COVID-19 pandemic has caused major disruption in societies globally. Our aim is to understand, what factors were associated with the impact of the pandemic on death rates. This will help countries to better prepare for and respond in future pandemics. Methods: We modeled with a linear mixed effect model the impact of COVID-19 with the dependent variable "Daily mortality change" (DMC) with country features variables and intervention (containment measurement) data. We tested both country characteristics consisting of demographic, societal, health related, healthcare system specific, environmental and cultural feature as well as COVID-19 specific response in the form of social distancing interventions. Results: A statistically significant country feature was Geert Hofstede's masculinity, i.e., the extent to which the use of force is endorsed socially, correlating positively with a higher DMC. The effects of different interventions were stronger that those of country features, particularly cancelling public events, controlling international travel and closing workplaces. Conclusion: Social distancing interventions and the country feature: Geert Hofstede's masculinity dimension had a significant impact on COVID-19 mortality change. However other country features, such as development and population health did not show significance. Thus, the crises responders and scholars could revisit the concept and understanding of preparedness for and response to pandemics.

15.
Anticancer Res ; 42(11): 5457-5463, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36288858

RESUMEN

BACKGROUND/AIM: Continuing chemotherapy or using hospital services near the end of life (EOL) and delaying the approach to palliative care (PC) services are factors impairing quality of life near the EOL. PATIENTS AND METHODS: Records of patients with pancreatic cancer treated at Helsinki University Hospital in 2013 and deceased by the end of 2014 were reviewed (N=221). The PC decision establishes the point when anticancer treatment is interrupted and the focus shifts to symptom-centered PC. The timing of the PC decision, referrals to specialized PC, use of hospital services at the EOL, and place of death were examined. RESULTS: The median overall survival was 13 months from diagnosis. The PC decision was made <30 days prior to death or not at all for 44% of patients. In addition, 68% of these patients used hospital service in the last month of life compared to 32% of patients with an earlier PC decision (p<0.001). A later or lacking PC decision correlated with a larger proportion of deaths in a secondary or tertiary hospital (64% vs. 36%), but the difference was not statistically significant (p=0.25). CONCLUSION: A late or lacking PC decision for patients with pancreatic cancer was found in almost half of the patients. There was a significant difference in the use of hospital services depending on the timing of the decision. An earlier PC decision might improve EOL care, since a late or lacking PC decision relates to a more abundant use of hospital services and an increased risk of hospital deaths.


Asunto(s)
Neoplasias , Neoplasias Pancreáticas , Cuidado Terminal , Humanos , Cuidados Paliativos , Estudios Retrospectivos , Calidad de Vida , Neoplasias/terapia , Neoplasias Pancreáticas/terapia , Centros de Atención Terciaria , Neoplasias Pancreáticas
16.
Front Physiol ; 13: 836814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250637

RESUMEN

Type 1 diabetes may, in time, cause lung dysfunction including airflow limitation. We hypothesized that ventilatory flow morphology during a cardiopulmonary exercise test (CPET) would be altered in adult men with well-controlled type 1 diabetes. Thirteen men with type 1 diabetes [glycated hemoglobin A1c 59 (9) mmol/mol or 7.5 (0.8)%, duration of diabetes 12 (9) years, and age 33.9 (6.6) years] without diagnosed diabetes-related complications and 13 healthy male controls [age 37.2 (8.6) years] underwent CPET on a cycle ergometer (40 W increments every 3 min until volitional fatigue). We used a principal component analysis based method to quantify ventilatory flow dynamics throughout the CPET protocol. Last minute of each increment, peak exercise, and recovery were examined using linear mixed models, which accounted for relative peak oxygen uptake and minute ventilation. The type 1 diabetes participants had lower expiratory peak flow (P = 0.008) and attenuated slope from expiration onset to expiratory peak flow (P = 0.012) at peak exercise when compared with the healthy controls. Instead, during submaximal exercise and recovery, the type 1 diabetes participants possessed similar ventilatory flow dynamics to that of the healthy controls. In conclusion, men with relatively well-controlled type 1 diabetes and without clinical evidence of diabetes-related complications exhibited attenuated expiratory flow at peak exercise independently of peak oxygen uptake and minute ventilation. This study demonstrates that acute exercise reveals alterations in ventilatory function in men with type 1 diabetes but not until peak exercise.

17.
JMIR Cardio ; 6(2): e35796, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36282560

RESUMEN

BACKGROUND: Cardiorespiratory fitness (CRF) is an independent risk factor for cardiovascular morbidity and mortality. Adding CRF to conventional risk factors (eg, smoking, hypertension, impaired glucose metabolism, and dyslipidemia) improves the prediction of an individual's risk for adverse health outcomes such as those related to cardiovascular disease. Consequently, it is recommended to determine CRF as part of individualized risk prediction. However, CRF is not determined routinely in everyday clinical practice. Wearable technologies provide a potential strategy to estimate CRF on a daily basis, and such technologies, which provide CRF estimates based on heart rate and body acceleration, have been developed. However, the validity of such technologies in estimating individual CRF in clinically relevant populations is poorly known. OBJECTIVE: The objective of this study is to evaluate the validity of a wearable technology, which provides estimated CRF based on heart rate and body acceleration, in working-aged adults with cardiovascular risk factors. METHODS: In total, 74 adults (age range 35-64 years; n=56, 76% were women; mean BMI 28.7, SD 4.6 kg/m2) with frequent cardiovascular risk factors (eg, n=64, 86% hypertension; n=18, 24% prediabetes; n=14, 19% type 2 diabetes; and n=51, 69% metabolic syndrome) performed a 30-minute self-paced walk on an indoor track and a cardiopulmonary exercise test on a treadmill. CRF, quantified as peak O2 uptake, was both estimated (self-paced walk: a wearable single-lead electrocardiogram device worn to record continuous beat-to-beat R-R intervals and triaxial body acceleration) and measured (cardiopulmonary exercise test: ventilatory gas analysis). The accuracy of the estimated CRF was evaluated against that of the measured CRF. RESULTS: Measured CRF averaged 30.6 (SD 6.3; range 20.1-49.6) mL/kg/min. In all participants (74/74, 100%), mean difference between estimated and measured CRF was -0.1 mL/kg/min (P=.90), mean absolute error was 3.1 mL/kg/min (95% CI 2.6-3.7), mean absolute percentage error was 10.4% (95% CI 8.5-12.5), and intraclass correlation coefficient was 0.88 (95% CI 0.80-0.92). Similar accuracy was observed in various subgroups (sexes, age, BMI categories, hypertension, prediabetes, and metabolic syndrome). However, mean absolute error was 4.2 mL/kg/min (95% CI 2.6-6.1) and mean absolute percentage error was 16.5% (95% CI 8.6-24.4) in the subgroup of patients with type 2 diabetes (14/74, 19%). CONCLUSIONS: The error of the CRF estimate, provided by the wearable technology, was likely below or at least very close to the clinically significant level of 3.5 mL/kg/min in working-aged adults with cardiovascular risk factors, but not in the relatively small subgroup of patients with type 2 diabetes. From a large-scale clinical perspective, the findings suggest that wearable technologies have the potential to estimate individual CRF with acceptable accuracy in clinically relevant populations.

18.
Sci Rep ; 12(1): 20520, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443480

RESUMEN

Bacterial nanocellulose (BC) is a highly versatile biopolymer currently pursued as a material of choice in varied themes of biomedical and material science research fields. With the aim to extend the biotechnological applications, the genetic tractability of the BC producers within the Komagataeibacter genus and its potential as an alternative host chassis in synthetic biology have been extensively studied. However, such studies have been largely focused on the model Komagataeibacter spp. Here, we present a novel K. intermedius strain capable of utilizing glucose, and glycerol sources for biomass and BC synthesis. Genome assembly identified one bacterial cellulose synthetase (bcs) operon containing the complete gene set encoding the BC biogenesis machinery (bcsI) and three additional copies (bcsII-IV). Investigations on the genetic tractability confirmed plasmid transformation, propagation of vectors with pBBR1 and p15A origin of replications and constitutive and inducible induction of recombinant protein in K. intermedius ENS15. This study provides the first report on the genetic tractability of K. intermedius, serving as starting point towards future genetic engineering of this strain.


Asunto(s)
Acetobacteraceae , Acetobacteraceae/genética , Ingeniería Genética , Biología Sintética , Biomasa
19.
Physiol Meas ; 43(5)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35483348

RESUMEN

Objective.Autonomic nervous system function and thereby bodily stress and recovery reactions may be assessed by wearable devices measuring heart rate (HR) and its variability (HRV). So far, the validity of HRV-based stress assessments has been mainly studied in healthy populations. In this study, we determined how psychosocial stress affects physiological and psychological stress responses in both young (18-30 years) and middle-aged (45-64 years) healthy individuals as well as in patients with arterial hypertension and/or either prior evidence of prediabetes or type 2 diabetes. We also studied how an HRV-based stress index (Relax-Stress Intensity, RSI) relates to perceived stress (PS) and cortisol (CRT) responses during psychosocial stress.Approach.A total of 197 participants were divided into three groups: (1) healthy young (HY,N = 63), (2) healthy middle-aged (HM,N = 61) and (3) patients with cardiometabolic risk factors (Pts,N = 73, 32-65 years). The participants underwent a group version of Trier Social Stress Test (TSST-G). HR, HRV (quantified as root mean square of successive differences of R-R intervals, RMSSD), RSI, PS, and salivary CRT were measured regularly during TSST-G and a subsequent recovery period.Main results.All groups showed significant stress reactions during TSST-G as indicated by significant responses of HR, RMSSD, RSI, PS, and salivary CRT. Between-group differences were also observed in all measures. Correlation and regression analyses implied RSI being the strongest predictor of CRT response, while HR was more closely associated with PS.Significance.The HRV-based stress index mirrors responses of CRT, which is an independent marker for physiological stress, around TSST-G. Thus, the HRV-based stress index may be used to quantify physiological responses to psychosocial stress across various health and age groups.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estrés Psicológico , Frecuencia Cardíaca/fisiología , Humanos , Hidrocortisona , Persona de Mediana Edad , Estrés Fisiológico
20.
Rapid Commun Mass Spectrom ; 25(11): 1497-502, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21594922

RESUMEN

Mid-summer N(2) profiles were analyzed from nine oxygen-stratified, humic-acid-rich lakes using a continuous flow isotope ratio mass spectrometer and a Gasbench II device. Sample preparation steps were performed under water to avoid air contamination. The instrument precision for the δ(15)N measurement was high (0.03‰), but for the whole sampling and analysis procedure the mean deviation between replicate samples was 0.13‰ for the δ(15)N measurements and 5.5% for the N(2) gas concentration analysis. The results show that the Gasbench peripheral was suitable for measurement of the (15)N natural abundance of dissolved nitrogen gas, with denitrification indicated by the oversaturation and slightly (<1‰) depleted δ(15)N values of the dissolved N(2) gas in the suboxic zones of some of the study lakes. Calculated values for the denitrified (excess) N(2) varied between -5.3 and 0.7‰. The denitrification potential was determined using the (15)N tracer method, with results showing nitrate-inducible denitrification and no signs of anaerobic ammonium oxidation (anammox).


Asunto(s)
Desnitrificación , Sustancias Húmicas , Isótopos de Nitrógeno/análisis , Nitrógeno/química , Oxígeno/química , Fenómenos Geológicos , Nitrógeno/análisis , Ciclo del Nitrógeno , Isótopos de Nitrógeno/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda