Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Neurol ; 31(8): e16316, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38716751

RESUMEN

BACKGROUND AND PURPOSE: The use of multiple tests, including spirometry, arterial blood gas (ABG) analysis and overnight oximetry (OvOx), is highly recommended to monitor the respiratory function of patients with motor neuron disease (MND). In this study, we propose a composite score to simplify the respiratory management of MND patients and better stratify their prognosis. MATERIALS AND METHODS: We screened the clinical charts of 471 non-ventilated MND patients referred to the Neuro-rehabilitation Unit of the San Raffaele Scientific Institute of Milan (January 2001-December 2019), collecting spirometric, ABG and OvOx parameters. To evaluate the prognostic role of each measurement, univariate Cox regression for death/tracheostomy was performed, and the variables associated with survival were selected to design a scoring system. Univariate and multivariate Cox regression analyses were then carried out to evaluate the prognostic role of the score. Finally, results were replicated in an independent cohort from the Turin ALS Center. RESULTS: The study population included 450 patients. Six measurements were found to be significantly associated with survival and were selected to design a scoring system (maximum score = 8 points). Kaplan-Meier analysis showed significant stratification of survival and time to non-invasive mechanical ventilation adaptation according to score values, and multivariate analysis confirmed the independent effect of the respiratory score on survival of each cohort. CONCLUSION: Forced vital capacity, ABG and OvOx parameters provide complementary information for the respiratory management and prognosis of MND patients and the combination of these parameters into a single score might help neurologists predict prognosis and guide decisions on the timing of the implementation of different diagnostic or therapeutic approaches.


Asunto(s)
Análisis de los Gases de la Sangre , Enfermedad de la Neurona Motora , Oximetría , Espirometría , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Análisis de los Gases de la Sangre/métodos , Oximetría/métodos , Enfermedad de la Neurona Motora/sangre , Enfermedad de la Neurona Motora/fisiopatología , Enfermedad de la Neurona Motora/diagnóstico , Pronóstico , Estudios Retrospectivos , Adulto
2.
Talanta ; 273: 125866, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490025

RESUMEN

The global increase in population aging has led to a rise in neurodegenerative diseases (NDs), posing significant challenges to public health. Developing selective and specific biomarkers for early diagnosis and drug development is crucial addressing the growing burden of NDs. In this context, the RNA-binding protein TDP-43 has emerged as a promising biomarker for amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and TDP-43-associated proteinopathies. However, existing detection methods suffer from limitations such as cost, complexity, and operator dependence. Here, we present a novel electrochemical biosensor integrated into a lab-on-chip (LoC) platform to detect TDP-43. The sensor utilizes electrosynthesized polypyrrole derivatives with carboxylic groups for transducer functionalization, enabling targeted immobilization of TDP-43 antibodies. Differential pulsed voltammetry (DPV) is used for the indirect detection and quantification of TDP-43. The chip exhibits rapid response, good reproducibility, a linear detection range, and sensitivity from 0.01 ng/mL to 25 ng/mL of TDP-43 protein concentration with a LOD = 10 pg/mL. Furthermore, successful TDP-43 detection in complex matrices like serum of ALS patients and healthy individuals demonstrates its potential as a point-of-care diagnostic device. This electrochemical biosensor integrated into a chip offers good sensitivity, rapid response, and robust performance, providing a promising avenue for advancing neurodegenerative disease diagnostics and therapeutic development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Técnicas Biosensibles , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Polímeros , Reproducibilidad de los Resultados , Inmunoensayo , Pirroles , Proteínas de Unión al ADN/metabolismo , Biomarcadores/metabolismo
3.
Front Immunol ; 15: 1436717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108272

RESUMEN

Neurological disorders, including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS), may be associated with alterations in blood cell composition and phenotype. Here, we focused our attention on circulating mucosal-associated invariant T (MAIT) cells, a CD8+ T cell memory population expressing the invariant Vα7.2 region in the T cell receptor and high surface levels of the CD161 marker. Transcriptomics data relative to peripheral blood mononuclear cells (PBMC) highlighted downregulation of CD161 and other MAIT-associated markers in progressive MS and not relapsing remitting (RR)-MS when gene expressions relative to each disease course were compared to those from healthy controls. Multiparametric flow cytometry of freshly isolated PBMC samples from untreated RR-MS, primary or secondary progressive MS (PP- or SP-MS), ALS and age- and sex-matched healthy controls revealed specific loss of circulating CD8+ MAIT cells in PP-MS and no other MS courses or another neurological disorder such as ALS. Overall, these observations point to the existence of immunological changes in blood specific for the primary progressive course of MS that may support clinical definition of disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células T Invariantes Asociadas a Mucosa , Humanos , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/sangre , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Adulto , Anciano , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/sangre , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Biomarcadores , Citometría de Flujo
4.
Neurology ; 102(2): e207946, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165325

RESUMEN

BACKGROUND AND OBJECTIVES: There is currently no validated disease-stage biomarker for amyotrophic lateral sclerosis (ALS). The identification of quantitative and reproducible markers of disease stratification in ALS is fundamental for study design definition and inclusion of homogenous patient cohorts into clinical trials. Our aim was to assess the rearrangements of structural and functional brain connectivity underlying the clinical stages of ALS, to suggest objective, reproducible measures provided by MRI connectomics mirroring disease staging. METHODS: In this observational study, patients with ALS and healthy controls (HCs) underwent clinical evaluation and brain MRI on a 3T scanner. Patients were classified into 4 groups, according to the King's staging system. Structural and functional brain connectivity matrices were obtained using diffusion tensor and resting-state fMRI data, respectively. Whole-brain network-based statistics (NBS) analysis and comparisons of intraregional and inter-regional connectivity values using analysis of covariance models were performed between groups. Correlations between MRI and clinical/cognitive measures were tested using Pearson coefficient. RESULTS: One hundred four patients with ALS and 61 age-matched and sex-matched HCs were included. NBS and regional connectivity analyses demonstrated a progressive decrease of intranetwork and internetwork structural connectivity of sensorimotor regions at increasing ALS stages in our cohort, compared with HCs. By contrast, functional connectivity showed divergent patterns between King's stages 3 (increase in basal ganglia and temporal circuits [p = 0.04 and p = 0.05, respectively]) and 4 (frontotemporal decrease [p = 0.03]), suggesting a complex interplay between opposite phenomena in late stages of the disease. Intraregional sensorimotor structural connectivity was correlated with ALS Functional Rating Scale-revised (ALSFRS-r) score (r = 0.31, p < 0.001) and upper motor neuron burden (r = -0.25, p = 0.01). Inter-regional frontal-sensorimotor structural connectivity was also correlated with ALSFRS-r (r = 0.24, p = 0.02). No correlations with cognitive measures were found. DISCUSSION: MRI of the brain allows to demonstrate and quantify increasing disruption of structural connectivity involving the sensorimotor networks in ALS, mirroring disease stages. Frontotemporal functional disconnection seems to characterize only advanced disease phases. Our findings support the utility of MRI connectomics to stratify patients and stage brain pathology in ALS in a reproducible way, which may mirror clinical progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Ganglios Basales , Encéfalo/diagnóstico por imagen , Difusión , Neuronas Motoras , Masculino , Femenino
5.
J Neurol ; 271(7): 4693-4723, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38802624

RESUMEN

In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/genética , Humanos , Animales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda