Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nature ; 604(7904): 80-85, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388198

RESUMEN

Biology operates through autonomous chemically fuelled molecular machinery1, including rotary motors such as adenosine triphosphate synthase2 and the bacterial flagellar motor3. Chemists have long sought to create analogous molecular structures with chemically powered, directionally rotating, components4-17. However, synthetic motor molecules capable of autonomous 360° directional rotation about a single bond have proved elusive, with previous designs lacking either autonomous fuelling7,10,12 or directionality6. Here we show that 1-phenylpyrrole 2,2'-dicarboxylic acid18,19 (1a) is a catalysis-driven20,21 motor that can continuously transduce energy from a chemical fuel9,20-27 to induce repetitive 360° directional rotation of the two aromatic rings around the covalent N-C bond that connects them. On treatment of 1a with a carbodiimide21,25-27, intramolecular anhydride formation between the rings and the anhydride's hydrolysis both occur incessantly. Both reactions are kinetically gated28-30 causing directional bias. Accordingly, catalysis of carbodiimide hydration by the motor molecule continuously drives net directional rotation around the N-C bond. The directionality is determined by the handedness of both an additive that accelerates anhydride hydrolysis and that of the fuel, and is easily reversed additive31. More than 97% of fuel molecules are consumed through the chemical engine cycle24 with a directional bias of up to 71:29 with a chirality-matched fuel and additive. In other words, the motor makes a 'mistake' in direction every three to four turns. The 26-atom motor molecule's simplicity augurs well for its structural optimization and the development of derivatives that can be interfaced with other components for the performance of work and tasks32-36.

2.
Nature ; 571(7764): 234-239, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270461

RESUMEN

Magnetic monopoles1-3 are hypothetical elementary particles with quantized magnetic charge. In principle, a magnetic monopole can be detected by the quantized jump in magnetic flux that it generates upon passage through a superconducting quantum interference device (SQUID)4. Following the theoretical prediction that emergent magnetic monopoles should exist in several lanthanide pyrochlore magnetic insulators5,6, including Dy2Ti2O7, the SQUID technique has been proposed for their direct detection6. However, this approach has been hindered by the high number density and the generation-recombination fluctuations expected of such thermally generated monopoles. Recently, theoretical advances have enabled the prediction of the spectral density of magnetic-flux noise from monopole generation-recombination fluctuations in these materials7,8. Here we report the development of a SQUID-based flux noise spectrometer and measurements of the frequency and temperature dependence of magnetic-flux noise generated by Dy2Ti2O7 crystals. We detect almost all of the features of magnetic-flux noise predicted for magnetic monopole plasmas7,8, including the existence of intense magnetization noise and its characteristic frequency and temperature dependence. Moreover, comparisons of simulated and measured correlation functions of the magnetic-flux noise indicate that the motions of magnetic charges are strongly correlated. Intriguingly, because the generation-recombination time constant for Dy2Ti2O7 is in the millisecond range, magnetic monopole flux noise amplified by SQUID is audible to humans.

3.
J Neurochem ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39463161

RESUMEN

Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.

4.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382637

RESUMEN

Lipoprotein lipase (LPL) is a secreted triglyceride lipase involved in the clearance of very-low-density lipoproteins and chylomicrons from circulation. LPL is expressed primarily in adipose and muscle tissues and transported to the capillary lumen. LPL secretion is regulated by insulin in adipose tissue; however, few studies have examined the regulatory and trafficking steps involved in secretion. Here, we describe the intracellular localization and insulin-dependent trafficking of LPL in 3T3-L1 adipocytes. We compared LPL trafficking to the better characterized trafficking pathways taken by leptin and GLUT4 (also known as SLC2A4). We show that the LPL trafficking pathway shares some characteristics of these other pathways, but that LPL subcellular localization and trafficking are distinct from those of GLUT4 and leptin. LPL secretion occurs slowly in response to insulin and rapidly in response to the Ca2+ ionophore ionomycin. This regulated trafficking is dependent on Golgi protein kinase D and the ADP-ribosylation factor GTPase ARF1. Together, these data give support to a new trafficking pathway for soluble cargo that is active in adipocytes.


Asunto(s)
Adipocitos , Lipoproteína Lipasa , Liposomas , Células 3T3-L1 , Tejido Adiposo , Animales , Insulina , Lipoproteína Lipasa/genética , Ratones
5.
Cogn Affect Behav Neurosci ; 24(2): 269-278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38168850

RESUMEN

Translation of drug targets from preclinical studies to clinical trials has been aided by cross-species behavioral tasks, but evidence for brain-based engagement during task performance is still required. Cross-species progressive ratio breakpoint tasks (PRBTs) measure motivation-related behavior and are pharmacologically and clinically sensitive. We recently advanced elevated parietal alpha power as a cross-species electroencephalographic (EEG) biomarker of PRBT engagement. Given that amphetamine increases breakpoint in mice, we tested its effects on breakpoint and parietal alpha power in both humans and mice. Twenty-three healthy participants performed the PRBT with EEG after amphetamine or placebo in a double-blind design. C57BL/6J mice were trained on PRBT with EEG (n = 24) and were treated with amphetamine or vehicle. A second cohort of mice was trained on PRBT without EEG (n = 40) and was treated with amphetamine or vehicle. In humans, amphetamine increased breakpoint. In mice, during concomitant EEG, 1 mg/kg of amphetamine significantly decreased breakpoint. In cohort 2, however, 0.3 mg/kg of amphetamine increased breakpoint consistent with human findings. Increased alpha power was observed in both species as they reached breakpoint, replicating previous findings. Amphetamine did not affect alpha power in either species. Amphetamine increased effort in humans and mice. Consistent with previous reports, elevated parietal alpha power was observed in humans and mice as they performed the PRBT. Amphetamine did not affect this EEG biomarker of effort. Hence, these findings support the pharmacological predictive validity of the PRBT to measure effort in humans and mice and suggest that this EEG biomarker is not directly reflective of amphetamine-induced changes in effort.


Asunto(s)
Anfetamina , Estimulantes del Sistema Nervioso Central , Electroencefalografía , Ratones Endogámicos C57BL , Motivación , Anfetamina/farmacología , Humanos , Animales , Masculino , Electroencefalografía/efectos de los fármacos , Adulto , Adulto Joven , Método Doble Ciego , Motivación/efectos de los fármacos , Motivación/fisiología , Femenino , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Ratones , Ritmo alfa/efectos de los fármacos , Ritmo alfa/fisiología
6.
Crit Rev Toxicol ; 54(4): 215-234, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38626048

RESUMEN

Consumers are confronted with conflicting information regarding the safety of specific foods. For example, the Environmental Working Group (EWG) publishes an annual consumer guide in which they rank the pesticide contamination of 46 popular fruits and vegetables, which includes designating the 12 with the greatest pesticide contamination as the "Dirty Dozen," to help consumers reduce exposures to toxic pesticides. However, consumer guides like EWG's only incorporate some hazard assessment principles and do not reflect a dietary risk assessment. Therefore, the purpose of this study is to apply risk assessment techniques to EWG's Dirty Dozen list using a uniform screening-level approach to estimate pesticide exposures for U.S. consumers and to characterize the associated chronic human health risks. The most commonly detected pesticide and its representative residue concentrations were identified for each produce type on the 2022 Dirty Dozen list using the USDA Pesticide Data Program database. Estimates of mean dietary consumption in the U.S. were used to calculate dietary exposure to each pesticide-produce combination for adults and children. Pesticide-specific U.S. EPA dietary health-based guidance values (HBGVs) were then used as benchmarks to evaluate the chronic human health risk of consuming each produce type. Overall, the estimated daily exposure for each pesticide-produce combination was below the corresponding HBGV for all exposure scenarios. The current analysis demonstrates that excessive produce-specific pesticide exposure is unexpected as the amount of produce that would need to be consumed on a chronic basis, even among children, far exceeds typical dietary intake. Future research is necessary to assess acute dietary exposure scenarios and to consider cumulative risk.


Asunto(s)
Exposición Dietética , Contaminación de Alimentos , Frutas , Residuos de Plaguicidas , Humanos , Medición de Riesgo , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/análisis , Contaminación de Alimentos/análisis , Verduras , Estados Unidos , Dieta
7.
Curr HIV/AIDS Rep ; 21(3): 87-115, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38602558

RESUMEN

PURPOSE OF REVIEW: Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS: Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.


Asunto(s)
Cognición , Infecciones por VIH , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Infecciones por VIH/psicología , Cognición/efectos de los fármacos , Cannabis/efectos adversos , Cannabinoides/uso terapéutico , Cannabinoides/efectos adversos , Cannabinoides/farmacología , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Uso de la Marihuana/efectos adversos
8.
Int J Environ Health Res ; : 1-9, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003755

RESUMEN

Jointpoint Regression Software from the National Cancer Institute was used to model age-adjusted male and female pleural and peritoneal mesothelioma rates in the surveillance, epidemiology, and end results (SEER) 8, SEER 12, and SEER 22 cancer registries. Linear mixed models were then used to determine if there was a statistical association between U.S. cosmetic talc consumption and the 30-year lagged age-adjusted mesothelioma rates (1) over the reporting period for each registry and (2) for the periods of time identified by the jointpoint model where changes in the rate of mesothelioma occurred. Regardless of the SEER registry used, from the early-1980s through 2020, rates of peritoneal mesothelioma have remained steady or declined. Female pleural mesothelioma rates were unchanged from the early-1980s until 2017 when rates declined, while male rates peaked in the early 1990s and have since declined. Cosmetic talc consumption was not statistically associated with an increased rate of pleural or peritoneal mesothelioma in males or females, suggesting that the use of cosmetic talc products is not associated with the development of mesothelioma.

9.
Angew Chem Int Ed Engl ; 63(23): e202400495, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568047

RESUMEN

Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.

10.
Angew Chem Int Ed Engl ; 63(22): e202402965, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533678

RESUMEN

The development of synthetic active matter requires the ability to design materials capable of harnessing energy from a source to carry out work. Nature achieves this using chemical reaction cycles in which energy released from an exergonic chemical reaction is used to drive biochemical processes. Although many chemically fuelled synthetic reaction cycles that control transient responses, such as self-assembly, have been reported, the generally high complexity of the reported systems hampers a full understanding of how the available chemical energy is actually exploited by these systems. This lack of understanding is a limiting factor in the design of chemically fuelled active matter. Here, we report a minimalistic synthetic responsive reaction cycle in which adenosine diphosphate (ADP) triggers the formation of a catalyst for its own hydrolysis. This establishes an interdependence between the concentrations of the network components resulting in the transient formation of the catalyst. The network is sufficiently simple that all kinetic and thermodynamic parameters governing its behaviour can be characterised, allowing kinetic models to be built that simulate the progress of reactions within the network. While the current network does not enable the ADP-hydrolysis reaction to populate a non-equilibrium composition, these models provide insight into the way the network dissipates energy. Furthermore, essential design principles are revealed for constructing driven systems, in which the network composition is driven away from equilibrium through the consumption of chemical energy.

11.
Crit Rev Toxicol ; 53(10): 611-657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38126124

RESUMEN

This analysis updates two previous analyses that evaluated the exposure-response relationships for lung cancer and mesothelioma in chrysotile-exposed cohorts. We reviewed recently published studies, as well as updated information from previous studies. Based on the 16 studies considered for chrysotile (<10% amphibole), we identified the "no-observed adverse effect level" (NOAEL) for lung cancer and/or mesothelioma; it should be noted that smoking or previous or concurrent occupational exposure to amphiboles (if it existed) was not controlled for. NOAEL values ranged from 2.3-<11.5 f/cc-years to 1600-3200 f/cc-years for lung cancer and from 100-<400 f/cc-years to 800-1599 f/cc-years for mesothelioma. The range of best-estimate NOAELs was estimated to be 97-175 f/cc-years for lung cancer and 250-379 f/cc-years for mesothelioma. None of the six cohorts of cement or friction product manufacturing workers exhibited an increased risk at any exposure level, while all but one of the six studies of textile workers reported an increased risk at one or more exposure levels. This is likely because friction and cement workers were exposed to much shorter chrysotile fibers. Only eight cases of peritoneal mesothelioma were reported in all studies on predominantly chrysotile-exposed cohorts combined. This analysis also proposed best-estimate amosite and crocidolite NOAELs for mesothelioma derived by the application of relative potency estimates to the best-estimate chrysotile NOAELs for mesothelioma and validated by epidemiology studies with exposure-response information. The best-estimate amosite and crocidolite NOAELs for mesothelioma were 2-5 f/cc-years and 0.6-1 f/cc-years, respectively. The rate of peritoneal mesothelioma in amosite- and crocidolite-exposed cohorts was between approximately 70- to 100-fold and several-hundred-fold higher than in chrysotile-exposed cohorts, respectively. These findings will help characterize potential worker and consumer health risks associated with historical and current chrysotile, amosite, and crocidolite exposures.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Asbesto Crocidolita/toxicidad , Asbesto Crocidolita/análisis , Asbestos Serpentinas/toxicidad , Asbesto Amosita/análisis , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Nivel sin Efectos Adversos Observados , Mesotelioma/inducido químicamente , Mesotelioma/epidemiología , Mesotelioma Maligno/inducido químicamente , Mesotelioma Maligno/complicaciones , Asbestos Anfíboles/toxicidad , Asbestos Anfíboles/análisis , Amianto/toxicidad , Amianto/análisis
12.
Proc Natl Acad Sci U S A ; 117(19): 10254-10264, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332168

RESUMEN

Lipases are enzymes necessary for the proper distribution and utilization of lipids in the human body. Lipoprotein lipase (LPL) is active in capillaries, where it plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides from packaged lipoproteins. Thirty years ago, the existence of a condensed and inactive LPL oligomer was proposed. Although recent work has shed light on the structure of the LPL monomer, the inactive oligomer remained opaque. Here we present a cryo-EM reconstruction of a helical LPL oligomer at 3.8-Å resolution. Helix formation is concentration-dependent, and helices are composed of inactive dihedral LPL dimers. Heparin binding stabilizes LPL helices, and the presence of substrate triggers helix disassembly. Superresolution fluorescent microscopy of endogenous LPL revealed that LPL adopts a filament-like distribution in vesicles. Mutation of one of the helical LPL interaction interfaces causes loss of the filament-like distribution. Taken together, this suggests that LPL is condensed into its inactive helical form for storage in intracellular vesicles.


Asunto(s)
Lipoproteína Lipasa/química , Lipoproteína Lipasa/metabolismo , Triglicéridos/metabolismo , Animales , Bovinos , Microscopía por Crioelectrón , Células HEK293 , Humanos , Hidrólisis , Lipoproteína Lipasa/genética , Ratones , Modelos Moleculares , Mutación , Células 3T3 NIH , Conformación Proteica , Especificidad por Sustrato
13.
J Am Chem Soc ; 144(37): 17241-17248, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074864

RESUMEN

Autonomous chemically fueled molecular machines that function through information ratchet mechanisms underpin the nonequilibrium processes that sustain life. These biomolecular motors have evolved to be well-suited to the tasks they perform. Synthetic systems that function through similar mechanisms have recently been developed, and their minimalist structures enable the influence of structural changes on machine performance to be assessed. Here, we probe the effect of changes in the fuel and barrier-forming species on the nonequilibrium operation of a carbodiimide-fueled rotaxane-based information ratchet. We examine the machine's ability to catalyze the fuel-to-waste reaction and harness energy from it to drive directional displacement of the macrocycle. These characteristics are intrinsically linked to the speed, force, power, and efficiency of the ratchet output. We find that, just as for biomolecular motors and macroscopic machinery, optimization of one feature (such as speed) can compromise other features (such as the force that can be generated by the ratchet). Balancing speed, power, efficiency, and directionality will likely prove important when developing artificial molecular motors for particular applications.


Asunto(s)
Rotaxanos , Carbodiimidas , Catálisis , Fenómenos Mecánicos
14.
J Am Chem Soc ; 144(44): 20153-20164, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36286995

RESUMEN

Chemically fueled autonomous molecular machines are catalysis-driven systems governed by Brownian information ratchet mechanisms. One fundamental principle behind their operation is kinetic asymmetry, which quantifies the directionality of molecular motors. However, it is difficult for synthetic chemists to apply this concept to molecular design because kinetic asymmetry is usually introduced in abstract mathematical terms involving experimentally inaccessible parameters. Furthermore, two seemingly contradictory mechanisms have been proposed for chemically driven autonomous molecular machines: Brownian ratchet and power stroke mechanisms. This Perspective addresses both these issues, providing accessible and experimentally useful design principles for catalysis-driven molecular machinery. We relate kinetic asymmetry to the Curtin-Hammett principle using a synthetic rotary motor and a kinesin walker as illustrative examples. Our approach describes these molecular motors in terms of the Brownian ratchet mechanism but pinpoints both chemical gating and power strokes as tunable design elements that can affect kinetic asymmetry. We explain why this approach to kinetic asymmetry is consistent with previous ones and outline conditions where power strokes can be useful design elements. Finally, we discuss the role of information, a concept used with different meanings in the literature. We hope that this Perspective will be accessible to a broad range of chemists, clarifying the parameters that can be usefully controlled in the design and synthesis of molecular machines and related systems. It may also aid a more comprehensive and interdisciplinary understanding of biomolecular machinery.


Asunto(s)
Cinética , Catálisis
15.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068531

RESUMEN

Lipoprotein lipase (LPL) is a secreted lipase that clears triglycerides from the blood. Proper LPL folding and exit from the endoplasmic reticulum (ER) require lipase maturation factor 1 (LMF1), an ER-resident transmembrane protein, but the mechanism involved is unknown. We used proteomics to identify LMF1-binding partners necessary for LPL secretion in HEK293 cells and found these to include oxidoreductases and lectin chaperones, suggesting that LMF1 facilitates the formation of LPL's five disulfide bonds. In accordance with this role, we found that LPL aggregates in LMF1-deficient cells due to the formation of incorrect intermolecular disulfide bonds. Cells lacking LMF1 were hypersensitive to depletion of glutathione, but not DTT treatment, suggesting that LMF1 helps reduce the ER Accordingly, we found that loss of LMF1 results in a more oxidized ER Our data show that LMF1 has a broader role than simply folding lipases, and we identified fibronectin and the low-density lipoprotein receptor (LDLR) as novel LMF1 clients that contain multiple, non-sequential disulfide bonds. We conclude that LMF1 is needed for secretion of some ER client proteins that require reduction of non-native disulfides during their folding.


Asunto(s)
Retículo Endoplásmico/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Disulfuros/metabolismo , Retículo Endoplásmico/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Glutatión/genética , Glutatión/metabolismo , Células HEK293 , Humanos , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Proteínas de la Membrana/genética , Oxidación-Reducción , Proteómica , Receptores de LDL/genética , Receptores de LDL/metabolismo
16.
Occup Environ Med ; 79(5): 304-307, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34697222

RESUMEN

INTRODUCTION: The contribution of hazardous noise-a ubiquitous exposure in workplaces-to occupational injury risk is often overlooked. In this ecological study, the fraction of US workplace acute injuries resulting in days away from work in 2019 attributable to hazardous occupational noise exposure was estimated. METHODS: Using the NoiseJEM, a job exposure matrix of occupational noise, and 2019 Occupational Employment and Wage Statistics data, the proportion of workers experiencing hazardous occupational noise (≥85 dBA) was estimated for every major US Standard Occupational Classification (SOC) group. Population attributable fractions (PAFs) were calculated for each major SOC group using the relative risk (RR) taken from a published 2017 meta-analysis on this relationship. RESULTS: About 20.3 million workers (13.8%) are exposed to hazardous levels of occupational noise. Nearly 3.4% of acute injuries resulting in days away from work in 2019 (95% CI 2.4% to 4.4%) were attributable to hazardous occupational noise, accounting for roughly 14 794 injuries (95% CI 10 367 to 18 994). The occupations with the highest and the lowest PAFs were production (11.9%) and office and administrative support (0.0%), respectively. DISCUSSION: Hazardous noise exposure at work is an important and modifiable factor associated with a substantial acute occupational injury burden.


Asunto(s)
Ruido en el Ambiente de Trabajo , Enfermedades Profesionales , Exposición Profesional , Traumatismos Ocupacionales , Humanos , Ruido en el Ambiente de Trabajo/efectos adversos , Enfermedades Profesionales/epidemiología , Exposición Profesional/efectos adversos , Traumatismos Ocupacionales/epidemiología , Traumatismos Ocupacionales/etiología , Ocupaciones
17.
Inhal Toxicol ; 34(13-14): 380-398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227690

RESUMEN

This study characterizes airborne asbestos exposures resulting from the adult application of cosmetic talc body powders spiked with known concentrations of tremolite. Raw talc ores were spiked with 0.005% and 0.1% asbestiform or non-asbestiform tremolite. Personal samples were collected during 16 simulated events, including puff and shaker application and associated clean-up activities. Airborne fiber levels (PCM) were not significantly different for simulations involving talc spiked with asbestiform and non-asbestiform tremolite (p = 0.6104). For application and clean-up of talc spiked with 0.005% asbestiform tremolite, 2 of 24 (8.3%) samples were above the LOD for TEM (0.003 f/cc). For application of talc spiked with 0.1% asbestiform tremolite, 21 of 24 (87.5%) were above the LOD for TEM. The corresponding mean PCME asbestos concentrations were 0.016 f/cc for puff and shaker for samples collected in the first 15 min, 0.002 f/cc for puff and 0.004 f/cc for shaker in the second 15 min, and 0.005 f/cc for puff and 0.013 f/cc for shaker for the full 30 min. Mean PCME concentrations for samples collected during clean-up following application of talc spiked with 0.1% asbestiform tremolite were 0.003 f/cc for samples collected in the first 15 min following puff application, 0.005 f/cc for samples collected in the second 15 min following shaker application, and 0 f/cc for the remaining clean-up samples. Using the EPA's exposure factors, we determined the range of cumulative asbestiform fiber exposures that would result from product use, assuming asbestiform tremolite was present at 0.1%.


Asunto(s)
Amianto , Cosméticos , Exposición Profesional , Talco , Asbestos Anfíboles , Exposición Profesional/análisis
18.
J Acoust Soc Am ; 152(1): 547, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35931541

RESUMEN

Exposure to noise occurs throughout daily life and, depending on the intensity, duration, and context, can lead to hearing loss, disturbed sleep, decreased academic achievement, and other negative health outcomes. Recently, smartwatches that use the device's onboard microphone to measure noise levels were released. This study evaluated the accuracy of these smartwatches in a controlled laboratory setting. For broadband pink noise, a total of 11 441 measurements were collected. The results showed that, on average, the smartwatch reported 3.4 dBA lower than the reference system on average. For the octave-band, a total of 18 449 measurements were collected. The smartwatch measured lower than the reference microphone from the 125 Hz to 1000 Hz octave bands, were somewhat in agreement at 2000 Hz, measured higher sound pressure levels than the reference microphone at 4000 Hz, and then lower at 8000 Hz. Despite not meeting the ANSI criteria for sound level meters, in some cases, these smartwatches still provide a reasonable degree of accuracy and have the potential for use in studies that require the measurement of personal noise exposure over an extended period.


Asunto(s)
Ruido , Dispositivos Electrónicos Vestibles , Ruido/efectos adversos
19.
J Occup Environ Hyg ; 19(5): 302-309, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286245

RESUMEN

In 2020, many cities closed indoor dining to curb rising COVID-19 cases. While restaurants in warmer climates were able to serve outdoors year-round, restaurants in colder climates adopted various solutions to continually operate throughout the colder months, such as the use of single-party outdoor dining enclosures to allow for the continuation of outdoor dining. This study evaluates indoor air quality and the air exchange rate using carbon dioxide as a tracer gas in a dining enclosure (12.03 m3) and models the probability of COVID-19 infection within such an enclosure. The air exchange rates were determined during two trials for the following scenarios: (1) door closed, (2) door opened, and (3) door opened intermittently every 15 min for 1 min per opening. The probability of COVID-19 infection was evaluated for each of these scenarios for 1 hr, with occupancy levels of two, four, and six patrons. The Wells-Riley equation was used to predict the probability of infection inside the dining enclosure. The air exchange rates were lowest in the closed-door scenarios (0.29-0.59 ACH), higher in the intermittent scenarios (2.36-2.49 ACH), and highest in the open-door scenarios (3.61 to 33.35 ACH). As the number of subjects inside the enclosure increased, the carbon dioxide accumulation increased in the closed-door and intermittent scenarios. There was no identifiable accumulation of carbon dioxide in the open-door scenario. The probability of infection (assuming one infected person without a mask) was inversely proportional to the airflow rate, and ranged from 0.0002-0.84 in the open-door scenario, 0.0034-0.94 for the intermittent scenarios, and 0.015-1.0 for the closed-door scenarios. The results from this study indicate that under typical use, the indoor air quality inside dining enclosures degrades during occupancy. The probability of patrons and workers inside dining enclosures being infected with COVID-19 is high when dining or serving a party with an infected person.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Contaminación del Aire Interior/análisis , COVID-19/epidemiología , Dióxido de Carbono , Humanos , Probabilidad , Respiración , Ventilación
20.
J Occup Environ Hyg ; 19(7): 437-447, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537195

RESUMEN

Recently, the National Institute for Occupational Safety and Health (NIOSH) released an updated version of the NIOSH Industry and Occupation Computerized Coding System (NIOCCS), which uses supervised machine learning to assign industry and occupational codes based on provided free-text information. However, no efforts have been made to externally verify the quality of assigned industry and job titles when the algorithm is provided with inputs of varying quality. This study sought to evaluate whether the NIOCCS algorithm was sufficiently robust with low-quality inputs and how variable quality could impact subsequent job estimated exposures in a large job-exposure matrix for noise (NoiseJEM). Using free-text industry and job descriptions from >700,000 noise measurements in the NoiseJEM, three files were created and input into NIOCCS: (1) N1, "raw" industries and job titles; (2) N2, "refined" industries and "raw" job titles; and (3) N3, "refined" industries and job titles. Standardized industry and occupation codes were output by NIOCCS. Descriptive statistics of performance metrics (e.g., misclassification/discordance of occupation codes) were evaluated for each input relative to the original NoiseJEM dataset (N0). Across major Standardized Occupational Classifications (SOC), total discordance rates for N1, N2, and N3 compared to N0 were 53.6%, 42.3%, and 5.0%, respectively. The impact of discordance on the major SOC group varied and included both over- and under-estimates of average noise exposure compared to N0. N2 had the most accurate noise exposure estimates (i.e., smallest bias) across major SOC groups compared to N1 and N3. Further refinement of job titles in N3 showed little improvement. Some variation in classification efficacy was seen over time, particularly prior to 1985. Machine learning algorithms can systematically and consistently classify data but are highly dependent on the quality and amount of input data. The greatest benefit for an end-user may come from cleaning industry information before applying this method for job classification. Our results highlight the need for standardized classification methods that remain constant over time.


Asunto(s)
Exposición Profesional , Algoritmos , Aprendizaje Automático , National Institute for Occupational Safety and Health, U.S. , Ocupaciones , Estados Unidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda