Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 619(7969): 311-316, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438592

RESUMEN

Coral reefs are losing the capacity to sustain their biological functions1. In addition to other well-known stressors, such as climatic change and overfishing1, plastic pollution is an emerging threat to coral reefs, spreading throughout reef food webs2, and increasing disease transmission and structural damage to reef organisms3. Although recognized as a global concern4, the distribution and quantity of plastics trapped in the world's coral reefs remains uncertain3. Here we survey 84 shallow and deep coral ecosystems at 25 locations across the Pacific, Atlantic and Indian ocean basins for anthropogenic macrodebris (pollution by human-generated objects larger than 5 centimetres, including plastics), performing 1,231 transects. Our results show anthropogenic debris in 77 out of the 84 reefs surveyed, including in some of Earth's most remote and near-pristine reefs, such as in uninhabited central Pacific atolls. Macroplastics represent 88% of the anthropogenic debris, and, like other debris types, peak in deeper reefs (mesophotic zones at 30-150 metres depth), with fishing activities as the main source of plastics in most areas. These findings contrast with the global pattern observed in other nearshore marine ecosystems, where macroplastic densities decrease with depth and are dominated by consumer items5. As the world moves towards a global treaty to tackle plastic pollution6, understanding its distribution and drivers provides key information to help to design the strategies needed to address this ubiquitous threat.


Asunto(s)
Arrecifes de Coral , Plásticos , Plásticos/efectos adversos , Plásticos/análisis , Cadena Alimentaria , Océano Pacífico , Océano Atlántico , Océano Índico , Tamaño de la Partícula , Actividades Humanas , Caza
2.
Mol Phylogenet Evol ; 190: 107970, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995894

RESUMEN

Armored catfishes of the genus Eurycheilichthys are endemic to Southern Brazil and Misiones (Argentina) comprising nine species of small size, with a high degree of sympatry and species diversity distributed in two river basins. Here we use new genome-wide data to infer a species phylogeny and test species boundaries for this poorly known group. We estimate 1) the phylogenetic relationships of the species of Eurycheilichthys based on 29,350 loci in 65 individuals of nine species plus outgroups, and 2) the population structure and differentiation based on 43,712 loci and 62 individuals to estimate how geography may have acted on speciation and formation of the sympatric species groups. Analyses support the monophyly of the genus and suggest two species-inclusive clades (East and West) with high support and very recently diverged species. Western clade contains E. limulus (from upper Jacuí River basin) that is sister to Western species of the Taquari-Antas basin plus E. paucidens. The Eastern clade contains E. pantherinus (from Uruguay River basin) sister to the Eastern species of the Taquari-Antas basin E. coryphaenus, plus the central-distributed species E. planus and E. vacariensis, and the more widely-distributed species E. luisae. Eurycheilichthys luisae is not monophyletic and may contain one or more cryptic species or hybrid individuals. A stronger diversity on structure of lineages on the Taquari-Antas, when compared to upper Uruguay and Jacuí River basins, and the fact that most of the sympatrically distributed taxa have non-sister relationships suggest a scenario of mainly allopatric speciation and may indicate a more dynamic landscape with headwater capture events among these tributaries.


Asunto(s)
Bagres , Simpatría , Humanos , Animales , Filogenia , Bagres/genética , Geografía , Brasil
4.
Nature ; 549(7670): 82-85, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28854164

RESUMEN

Studies on the distribution and evolution of organisms on oceanic islands have advanced towards a dynamic perspective, where terrestrial endemicity results from island geographical aspects and geological history intertwined with sea-level fluctuations. Diversification on these islands may follow neutral models, decreasing over time as niches are filled, or disequilibrium states and progression rules, where richness and endemism rise with the age of the archipelago owing to the splitting of ancestral lineages (cladogenesis). However, marine organisms have received comparatively little scientific attention. Therefore, island and seamount evolutionary processes in the aquatic environment remain unclear. Here we analyse the evolutionary history of reef fishes that are endemic to a volcanic ridge of seamounts and islands to understand their relations to island evolution and sea-level fluctuations. We also test how this evolutionary history fits island biogeography theory. We found that most endemic species have evolved recently (Pleistocene epoch), during a period of recurrent sea-level changes and intermittent connectivity caused by repeated aerial exposure of seamounts, a finding that is consistent with an ephemeral ecological speciation process. Similar to findings for terrestrial biodiversity, our data suggest that the marine speciation rate on islands is negatively correlated with immigration rate. However, because marine species disperse better than terrestrial species, most niches are filled by immigration: speciation increases with the random accumulation of species with low dispersal ability, with few opportunities for in situ cladogenesis and adaptive radiation. Moreover, we confirm that sea-level fluctuations and seamount location play a critical role in marine evolution, mainly by intermittently providing stepping stones for island colonization.


Asunto(s)
Organismos Acuáticos/aislamiento & purificación , Biodiversidad , Peces/fisiología , Islas , Filogeografía , Animales , Organismos Acuáticos/fisiología , Océano Atlántico , Evolución Biológica , Brasil , Arrecifes de Coral
5.
J Environ Manage ; 340: 117954, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37119623

RESUMEN

After successful invasions in the Caribbean and Mediterranean, lionfish (Pterois spp.) have recently invaded another important biogeographical region -the Brazilian Province. In this article, we discuss this new invasion, focusing on a roadmap for urgent mitigation of the problem, as well as focused research and management strategies. The invasion in Brazil is already in the consolidation stage, with 352 individuals recorded so far (2020-2023) along 2766 km of coastline. This includes both juveniles and adults, including egg-bearing females, ranging in length from 9.1 to 38.5 cm. Until now, most of the records in the Brazilian coast occurred in the equatorial southwestern Atlantic (99%), mainly on the Amazon mesophotic reefs (15% of the records), northeastern coast of Brazil (45%), and the Fernando de Noronha Archipelago (41%; an UNESCO World Heritage Site with high endemism rate). These records cover a broad depth range (1-110 m depth), twelve protected areas, eight Brazilian states (Amapá, Pará, Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, and Pernambuco) and multiple habitats (i.e., mangrove estuaries, shallow-water and mesophotic reefs, seagrass beds, artificial reefs, and sandbanks), indicating a rapid and successful invasion process in Brazilian waters. In addition, the lack of local knowledge of rare and/or cryptic native species that are potentially vulnerable to lionfish predation raises concerns regarding the potential overlooked ecological impacts. Thus, we call for an urgent integrated approach with multiple stakeholders and solution-based ecological research, real-time inventories, update of environmental and fishery legislation, participatory monitoring supported by citizen science, and a national and unified plan aimed at decreasing the impact of lionfish invasion. The experience acquired by understanding the invasion process in the Caribbean and Mediterranean will help to establish and prioritize goals for Brazil.


Asunto(s)
Ecosistema , Perciformes , Humanos , Animales , Brasil , Región del Caribe , Conducta Predatoria , Especies Introducidas
6.
Mol Phylogenet Evol ; 160: 107108, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33631353

RESUMEN

Brevoortia Gill 1861 is a genus of the Clupeidae (Teleostei) that includes six species of fishes commonly known as menhadens in eastern North America and "savelhas" or "saracas" in southeastern South America. Species of Brevoortia are important components of the marine food web of coastal ecosystems in the Atlantic and contribute significantly to fisheries. In this study, the first phylogenetic and biogeographic hypotheses including all species of Brevoortia are presented. A total of 113 specimens were analyzed using three molecular markers (two mitochondrial: COI and 16s; and one nuclear: RAG2). Maximum Parsimony, Maximum Likelihood and Bayesian Inference were employed to estimate phylogenetic relationships. A Bayesian multispecies coalescent approach was used to estimate a dated phylogeny, which supported biogeographic analyses of ancestral geographic ranges. Results corroborate previous hypotheses that the four North Atlantic species are grouped in two clades, one composed of B. tyrannus (Latrobe, 1802) and B. patronus Goode, 1878, and the second including B. smithi Hildebrand, 1941 and B. gunteri Hildebrand, 1948. The South Atlantic B. aurea (Spix and Agassiz, 1829) and B. pectinata (Jenyns, 1842) form a third clade, which is sister to the clade composed of B. smithi and B. gunteri. The monophyly and validity of the six nominal species of Brevoortia were not supported. Results also indicate that Brevoortia originated in the North Atlantic during the middle Miocene (about 15 Mya). A cooling event of the tropical Atlantic at around 10 Mya likely facilitated the range expansion of the genus to the South Atlantic, whereas a significant warming of the tropical Atlantic waters during the late Miocene at 6-7 Mya possibly promoted the isolation between the northern and southern counterparts of that ancestral lineage. The relevance of the Florida Peninsula in association with sea level fluctuations for the diversification within Brevoortia is also discussed.


Asunto(s)
Peces/clasificación , Peces/genética , Variación Genética , Filogenia , Filogeografía , Animales , Teorema de Bayes , Ecosistema
7.
J Fish Biol ; 97(4): 1143-1153, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32743800

RESUMEN

Saint Peter and Saint Paul's Archipelago (SPSPA), one of the smallest and most isolated island groups in the world, is situated on the Mid-Atlantic Ridge, between Brazil and the African continent. SPSPA has low species richness and high endemism; nonetheless, the diversity of fishes from deep habitats (>30 m depth) had not been previously studied in detail. Several expeditions conducted between 2009 and 2018 explored the shallow and deep reefs of SPSPA using scuba, closed-circuit rebreathers, manned submersibles, baited remote underwater stereo-videos (stereo-BRUV) and fishing between 0 and 1050 m depth. These expeditions yielded 41 new records of fishes for SPSPA: 9 in open waters, 9 in shallow waters (0-30 m), 8 in mesophotic ecosystems (30-150 m) and 15 in deeper reefs (>150 m). Combined with literature records of adult pelagic, shallow and deep-reef species, as well as larvae, the database of the fish biodiversity for SPSPA currently comprises 225 species (169 recorded as adult fishes and 79 as larvae, with 23 species found in both stages). Most of them (112) are pelagic, 86 are reef-associated species and 27 are deep-water specialists. Species accumulation curves show that the number of fish species has not yet reached an asymptote. Whereas the number of species recorded in SPSPA is similar to that in other oceanic islands in the Atlantic Ocean, the proportion of shorefishes is relatively lower, and the endemism level is the third highest in the Atlantic. Twenty-nine species are listed as threatened with extinction. Observations confirm the paucity of top predators on shallow rocky reefs of the island, despite the presence of several pelagic shark species around SPSPA. Because all of the endemic species are reef associated, it is argued that the new marine-protected areas created by the Brazilian government do not ensure the protection and recovery of SPSPA's biodiversity because they allow exploitation of the most vulnerable species around the archipelago itself. This study suggests a ban on reef fish exploitation inside an area delimited by the 1000 m isobath around the islands (where all known endemics are concentrated) as the main conservation strategy to be included in the SPSPA management plan being prepared by the Brazilian government.


Asunto(s)
Biodiversidad , Bases de Datos Factuales , Peces/clasificación , Animales , Océano Atlántico , Brasil , Arrecifes de Coral , Ecosistema , Islas , Tiburones
8.
Mol Phylogenet Evol ; 121: 35-45, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29289544

RESUMEN

The New World Halichoeres comprises about 30 small to medium sized wrasse species that are prominent members of reef communities throughout the tropical Western Atlantic and Eastern Pacific. We conducted a phylogenetic analysis of this group and related lineages using new and previously published sequence data. We estimated divergence times, evaluated the monophyly of this group, their relationship to other labrids, as well as the time-course and geography of speciation. These analyses show that all members of New World Halichoeres form a monophyletic group that includes Oxyjulis and Sagittalarva. New World Halichoeres is one of numerous labrid groups that appear to have radiated rapidly about 32 Ma and form a large polytomy within the julidine wrasses. We reconstruct the tropical Western Atlantic to be the ancestral area of New World Halichoeres, with four invasions of the Eastern Pacific and one reversal from East Pacific to Western Atlantic. These five speciation events were spread across the history of the group, with none corresponding closely to the time of the closure of the Isthmus of Panama. Three speciation events within the Atlantic occurred across the Orinoco-Amazon outflow and within the Pacific, five involve splits between lineages that occupy coastal reef systems and offshore islands. Of eight sister species pairs, seven show complete allopatry and one is fully sympatric.


Asunto(s)
Especiación Genética , Geografía , Perciformes/clasificación , Perciformes/genética , Filogenia , Animales , Teorema de Bayes , Ecosistema , Modelos Biológicos , Panamá , Filogeografía , Especificidad de la Especie , Factores de Tiempo
9.
Mol Ecol ; 26(2): 639-652, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27873385

RESUMEN

Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister-species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site-associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister-species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174-0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.


Asunto(s)
Hibridación Genética , Perciformes/clasificación , Selección Genética , Simpatría , Animales , Arrecifes de Coral , ADN Mitocondrial/genética , Flujo Génico , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
10.
Mol Phylogenet Evol ; 100: 243-253, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27068838

RESUMEN

The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occurs on reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d=0.006-0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographic barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST=0.066-0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7-0.9Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypothesis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition. We recommend P.d. diacanthus and P.d. flavescens for the Pacific and Indian Ocean/Red Sea forms.


Asunto(s)
Peces/genética , Animales , Australia , Citocromos b/genética , ADN Mitocondrial/genética , Evolución Molecular , Proteínas de Peces/genética , Peces/clasificación , Variación Genética , Océano Índico , Intrones , Islas , Tipificación Molecular , Océano Pacífico , Filogenia , Filogeografía , Polinesia
11.
Mol Phylogenet Evol ; 101: 203-215, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27143241

RESUMEN

Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N=141) and A. nigricans (N=412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N=54) and A. japonicus (N=49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000-2.25million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr≈0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST=0.6533, P<0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mtDNA lineage and species identification based on external morphology, indicating that species integrity may not be eroding. The A. nigricans complex demonstrates a range of outcomes from incomplete speciation to secondary contact to decreasing hybridization with increasing evolutionary depth.


Asunto(s)
Evolución Biológica , Hibridación Genética , Perciformes/genética , Animales , Citocromos b/genética , ADN Mitocondrial/química , ADN Mitocondrial/aislamiento & purificación , ADN Mitocondrial/metabolismo , Océano Índico , Repeticiones de Microsatélite/genética , Mitocondrias/genética , Océano Pacífico , Perciformes/clasificación , Filogenia
12.
J Hered ; 107(7): 647-653, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27651391

RESUMEN

The pygmy angelfishes (genus Centropyge) provide numerous examples of discordance between color morphology, taxonomy, and evolutionary genetic lineages. This discordance is especially evident in the Centropyge flavissima complex, which includes three primary color morphs, three previously recognized species (C. flavissima, Centropyge eibli, and Centropyge vrolikii) and three distinct mitochondrial (mtDNA) lineages that do not align with species designations. Our previous research showed that the putative C. flavissima arose independently in the Indian and Pacific Oceans, and the three mtDNA lineages align with geography rather than species assignments. Here, we add 157 specimens to the previous dataset of 291 specimens, spread across a greater geographic range, to pinpoint the distribution of mtDNA lineages and color morphs. We found that the mtDNA lineages show remarkably strong geographic boundaries corresponding to the Indian Ocean, Central-West Pacific, and Central-South Pacific. We also test the validity of the "Black Tiger Centropyge" in the C. flavissima species complex, a taxonomic oddity that is restricted to shoals and atolls off the coast of northwestern Australia, and the newly named Centropyge cocosensis assigned to the C. flavissima lineage in the Indian Ocean. We conclude that the Black Tiger Centropyge is not a valid species but rather an intermediate between sympatric color morphs that correspond to the putative species C. eibli and C. vrolikii Our greater sampling efforts also do not support the genetic distinctiveness of C. cocosensis given shared mtDNA haplotypes with the sympatric C. eibli and C. vrolikii, but instead we find conflicting lines of evidence concerning the taxonomy of this group. We urge caution and taxonomic restraint until the true nature of this species complex can be revealed.


Asunto(s)
Peces/clasificación , Peces/genética , Genética de Población , Animales , ADN Mitocondrial , Variación Genética , Océano Índico , Océano Pacífico , Fenotipo , Filogenia , Filogeografía
13.
Mol Ecol ; 24(7): 1543-57, 2015 04.
Artículo en Inglés | MEDLINE | ID: mdl-25753379

RESUMEN

The drivers of speciation remain among the most controversial topics in evolutionary biology. Initially, Darwin emphasized natural selection as a primary mechanism of speciation, but the architects of the modern synthesis largely abandoned that view in favour of divergence by geographic isolation. The balance between selection and isolation is still at the forefront of the evolutionary debate, especially for the world's tropical oceans where biodiversity is high, but isolating barriers are few. Here, we identify the drivers of speciation in Pacific reef fishes of the genus Acanthurus by comparative genome scans of two peripheral populations that split from a large Central-West Pacific lineage at roughly the same time. Mitochondrial sequences indicate that populations in the Hawaiian Archipelago and the Marquesas Islands became isolated approximately 0.5 Ma. The Hawaiian lineage is morphologically indistinguishable from the widespread Pacific form, but the Marquesan form is recognized as a distinct species that occupies an unusual tropical ecosystem characterized by upwelling, turbidity, temperature fluctuations, algal blooms and little coral cover. An analysis of 3737 SNPs reveals a strong signal of selection at the Marquesas, with 59 loci under disruptive selection including an opsin Rh2 locus. While both the Hawaiian and Marquesan populations indicate signals of drift, the former shows a weak signal of selection that is comparable with populations in the Central-West Pacific. This contrast between closely related lineages reveals one population diverging due primarily to geographic isolation and genetic drift, and the other achieving taxonomic species status under the influence of selection.


Asunto(s)
Evolución Biológica , Arrecifes de Coral , Perciformes/genética , Selección Genética , Animales , ADN Mitocondrial/genética , Genética de Población , Haplotipos , Hawaii , Islas del Pacífico , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
14.
Mol Phylogenet Evol ; 84: 166-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25596541

RESUMEN

Fishes described as "anti-equatorial" have disjunct distributions, inhabiting temperate habitat patches on both sides of the tropics. Several alternative hypotheses suggest how and when species with disjunct distributions crossed uninhabitable areas, including: ancient vicariant events, competitive exclusion from the tropics, and more recent dispersal during Pliocene and Pleistocene glacial periods. Surgeonfishes in the genus Prionurus can provide novel insight into this pattern as its member species have disjunct distributions inhabiting either temperate latitudes, cold-water upwellings in the tropics, or low diversity tropical reef ecosystems. Here the evolutionary history and historical biogeography of Prionurus is examined using a dataset containing both mitochondrial and nuclear data for all seven extant species. Our results indicate that Prionurus is monophyletic and Miocene in origin. Several relationships remain problematic, including the placement of the Australian P. microlepidotus, and the relationship between P. laticlavius and P. punctatus. Equatorial divergence events between temperate western Pacific habitats occurred at least twice in Prionurus: once in the Miocene and again in the late Pliocene/early Pleistocene. Three species with tropical affinities, P. laticlavius, P. punctatus, and P. biafraensis, form a clade that originated in the Pliocene. These results suggest that a variety of mechanisms may regulate the disjunct distribution of temperate fishes, and provide support for both older and younger equatorial crossing events. They also suggest that interspecific competitive exclusion may be influential in fishes with "anti-equatorial" distributions.


Asunto(s)
Evolución Biológica , Perciformes/clasificación , Filogenia , Animales , Australia , Teorema de Bayes , Funciones de Verosimilitud , Modelos Genéticos , Análisis de Secuencia de ADN
15.
Mol Phylogenet Evol ; 74: 38-47, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24500654

RESUMEN

The pygmy angelfishes (genus Centropyge, family Pomacanthidae) are brightly colored species that occupy reef habitats in every tropical ocean. Some species are rarely observed because they occur below conventional scuba depths. Their striking coloration can command thousands of U.S. dollars in the aquarium trade, and closely related species are often distinguished only by coloration. These factors have impeded phylogenetic resolution, and every phylogeographic survey to date has reported discordance between coloration, taxonomy, and genetic partitions. Here we report a phylogenetic survey of 29 of the 34 recognized species (N=94 plus 23 outgroups), based on two mtDNA and three nuclear loci, totaling 2272 bp. The resulting ML and Baysian trees are highly concordant and indicate that the genus Centropyge is paraphyletic, consistent with a previous analysis of the family Pomacanthidae. Two recognized genera (Apolemichthys and Genicanthus) nest within Centropyge, and two subgenera (Xiphypops and Paracentropyge) comprise monophyletic lineages that should be elevated to genus level. Based on an age estimate of 38 Ma for the family Pomacanthidae, Centropyge diverged from the closest extant genus Pygoplites about 33 Ma, three deep lineages within Centropyge diverged about 18-28 Ma, and four species complexes diverged 3-12 Ma. However, in 11 of 13 cases, putative species in these complexes are indistinguishable based on morphology and genetics, being defined solely by coloration. These cases indicate either emerging species or excessive taxonomic splitting based on brightly colored variants.


Asunto(s)
Evolución Molecular , Perciformes/genética , Filogenia , Animales , Color , ADN Mitocondrial/genética , Análisis de Secuencia de ADN
16.
Trends Ecol Evol ; 39(6): 585-598, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38413283

RESUMEN

The function and stability of mesophotic coral ecosystems (MCEs) have been extensively studied in recent years. These deep reefs are characterized by local physical processes, particularly the steep gradient in irradiance with increasing depth, and their impact on trophic resources. Mesophotic reefs exhibit distinct zonation patterns that segregate shallow reef biodiversity from ecologically unique deeper communities of endemic species. While mesophotic reefs are hypothesized as relatively stable refuges from anthropogenic stressors and a potential seed bank for degraded shallow reefs, these are site-specific features, if they occur at all. Mesophotic reefs are now known to be susceptible to many of the same stressors that are degrading shallow reefs, suggesting that they require their own specific conservation and management strategies.


Asunto(s)
Antozoos , Biodiversidad , Conservación de los Recursos Naturales , Arrecifes de Coral , Animales , Antozoos/fisiología , Ecosistema
17.
J Cell Physiol ; 228(4): 824-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23018614

RESUMEN

Exercise is recognized to prevent and attenuate several metabolic and cardiovascular disorders. Obesity is commonly related to cardiovascular diseases, frequently resulting in heart failure and death. To elucidate the effects of acute exercise in heart tissue from obese animals, 12-week-old C57BL6/J obese (ob/ob) and non-obese (ob/OB) mice were submitted to a single bout of swimming and had their hearts analyzed by proteomic techniques. Mice were divided into three groups: control (ob/ob, n = 3; ob/OB, n = 3); a moderate intensity consisting of 20 min of swimming around 90% of Maximal Lactate Steady State (ob/ob, n = 3; ob/OB, n = 3), and a high intensity exercise performed as an incremental overload test (ob/ob, n = 3; ob/OB, n = 3). Obesity modulations were analyzed by comparing ob/ob and ob/OB control groups. Differential 2-DE analysis revealed that single session of exercise was able to up-regulate: myoglobin (ob/ob), aspartate aminotransferase (ob/OB) and zinc finger protein (ob/OB) and down-regulate: nucleoside diphosphate kinase B (ob/OB), mitochondrial aconitase (ob/ob and ob/OB) and fatty acid binding protein (ob/ob). Zinc finger protein and α-actin were up-regulated by the effect of obesity on heart proteome. These data demonstrate the immediate response of metabolic and stress-related proteins after exercise so as contractile protein by obesity modulation on heart proteome.


Asunto(s)
Corazón/fisiopatología , Ratones Obesos/genética , Ratones Obesos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Condicionamiento Físico Animal/fisiología , Proteoma/genética , Proteoma/metabolismo , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/fisiopatología , Proteómica/métodos , Natación/fisiología
18.
Zool Stud ; 62: e8, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168710

RESUMEN

A new labrid fish, Terelabrus toretore sp. nov., the fifth species within the genus, is herein described from two specimens collected at a depth of 140 m from a mesophotic coral ecosystem in Tahiti, French Polynesia. Terelabrus toretore sp. nov. is characterized by having 43-44 scaled rows in longitudinal series; 42 pored lateral-line scales; 5+10 gill rakers; 10 scale rows below the lateral line; 8 posterior branches on the main supratemporal sensory canal; a relatively long snout (snout length 9.6-9.7% SL), and a coloration consisting of a yellow caudal fin and a wide, red, mid-lateral stripe with no blotching, the space above which is white anteriorly, becoming predominantly yellow from beneath the dorsal fin to the caudal peduncle. In addition to describing this new species, we document the first record of Terelabrus rubrovittatus from the Republic of Marshall Islands, and the first record of Terelabrus zonalis from Australia, along with the first description of its coloration. We present a molecular phylogeny of the genus based upon mitochondrial cytochrome c oxidase subunit I (COI) DNA sequences.

19.
Curr Biol ; 33(8): 1421-1430.e4, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36917975

RESUMEN

Coral reefs are home to some of the most studied ecological assemblages on the planet. However, differences in large-scale assembly rules have never been studied using empirical quantitative data stratified along the depth gradient of reefs. Consequently, little is known about the small- and regional-scale effects of depth on coral reef assemblages. Using a large dataset of underwater surveys, we observed that the influence of classic biogeographic drivers on the species richness of coral reef fishes changes significantly with depth, shaping distinct assemblages governed by different rules in mesophotic coral ecosystems. We show that a general pattern of decreased taxonomic and functional richness of reef fish assemblages with depth results from convergent filtering of species composition and trophic strategies on deeper reefs across ocean basins and that at smaller scales deep-reef communities are less influenced by regional factors than shallower reefs.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Peces , Biodiversidad
20.
Sci Rep ; 13(1): 13469, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596337

RESUMEN

In 2020, multiple lionfish (Pterois spp.) records along the equatorial Southwestern (SW) Atlantic revealed a new expansion of these potentially damaging invasive populations, which could impact over 3500 km of Brazilian coastline over the next few years, as well as unique ecosystems and marine protected areas in its path. To assess the taxonomic status, invasion route, and correlation with other centres of distribution, we investigated the genetic diversity patterns of lionfish caught in 2022 at the Amazonia, Northeastern Brazil, and Fernando de Noronha and Rocas Atoll ecoregions, using two molecular markers, the mitochondrial COI and the nuclear S7 RP1. The data indicate that all studied lionfish belong to what is generally accepted as P. volitans, and share the same genetic signature as lionfish present in the Caribbean Sea. The shared haplotypes and alleles indicate that the SW Atlantic invasion derives from an active movement of adult individuals from the Caribbean Sea into the Brazilian coast. The Amazon mesophotic reefs likely served as a stepping-stone to overcome the biogeographical barrier represented by the Amazon-Orinoco River plume. New alleles found for S7 RP1 suggest the onset of local genetic diversification, heightening the environmental risks as this bioinvasion heads towards other South Atlantic ecoregions.


Asunto(s)
Ecosistema , Variación Genética , Humanos , Adulto , Alelos , Océano Atlántico , Brasil
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda