Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nature ; 623(7985): 183-192, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37853125

RESUMEN

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.


Asunto(s)
Compartimento Celular , Cromatina , Daño del ADN , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Fase G1 , Histonas/metabolismo , Neoplasias/genética , Estructuras R-Loop , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
2.
Nature ; 590(7847): 660-665, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597753

RESUMEN

The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Genoma/genética , Histonas/metabolismo , Humanos , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Fosforilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Cohesinas
3.
Genes Dev ; 33(17-18): 1175-1190, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31395742

RESUMEN

The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. DNA double-strand breaks (DSBs) within rDNA induce both rDNA transcriptional repression and nucleolar segregation, but the link between the two events remains unclear. Here we found that DSBs induced on rDNA trigger transcriptional repression in a cohesin- and HUSH (human silencing hub) complex-dependent manner throughout the cell cycle. In S/G2 cells, transcriptional repression is further followed by extended resection within the interior of the nucleolus, DSB mobilization at the nucleolar periphery within nucleolar caps, and repair by homologous recombination. We showed that nuclear envelope invaginations frequently connect the nucleolus and that rDNA DSB mobilization, but not transcriptional repression, involves the nuclear envelope-associated LINC complex and the actin pathway. Altogether, our data indicate that rDNA break localization at the nucleolar periphery is not a direct consequence of transcriptional repression but rather is an active process that shares features with the mobilization of persistent DSB in active genes and heterochromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Ribosómico/genética , Regulación de la Expresión Génica/genética , ARN Largo no Codificante/metabolismo , Nucléolo Celular/metabolismo , Histonas/metabolismo , Recombinación Homóloga/genética , Membrana Nuclear/metabolismo , Cohesinas
4.
Mol Cell ; 72(2): 250-262.e6, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270107

RESUMEN

Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.


Asunto(s)
Cromatina/genética , Reparación del ADN/genética , Histonas/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Humanos , Células K562 , Proteína 1 de Unión al Supresor Tumoral P53/genética
6.
J Clin Nurs ; 32(15-16): 5000-5009, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246840

RESUMEN

AIMS: To assess the incidence density of local complications of peripheral venous catheters in patients aged 70 years and older, to identify risk factors for local complications of peripheral venous catheters, to describe microbiological epidemiology and to assess the impact of complications on patient outcomes. DESIGN: Prospective, observational, single-centre study. METHODS: Patients 70 years and older admitted to the geriatric department of a teaching hospital in France between December 2019 and May 2020 were considered for inclusion if they had a peripheral venous catheter during their stay. Nurses checked the catheter insertion site three times a day for local complications; physicians ensured the follow-up of complications. The STROBE checklist was used in this prospective observational study. RESULTS: A total of 322 patients were included, with 849 peripheral venous catheters; the median age was 88 years and 182 (56.5%) were women. The incidence density of local complications was 50.5/1000 peripheral venous catheter-days. Risk factors for local complications on multivariate analysis were dressing replacement (OR 1.18), furosemide (OR 1.11) and vancomycin (OR 1.60) infusion, urinary continence (OR 1.09) and hematoma at the catheter insertion site (OR 1.15). Thirteen cellulitis and three abscesses were diagnosed. Occurrence of a local complication was associated with a 3-day increased duration of hospital stay (17 vs. 14 days). CONCLUSION: Risk factors for peripheral venous catheter local complications include urinary continence, furosemide or vancomycin infusion, hematoma at the peripheral venous catheter insertion site or dressing replacement. IMPLICATION FOR THE PATIENT CARE: Closer clinical monitoring may help reduce the occurrence of local peripheral venous catheters complication in patients 70 years and older. RELEVANCE TO CLINICAL PRACTICE: Patients at greater risk of peripheral venous catheter local complications deserve closer clinical monitoring or improved preventive measures, which may be beneficial to reduce the length of hospital stay. NO PATIENT OR PUBLIC CONTRIBUTION: The study was designed to describe risk factors for local complications of peripheral venous catheters in order to reinforce surveillance in this specific population by nurses and medical staffs. Patients had their peripheral venous catheter insertion site checked thrice a day by the nurse in charge as part of usual care. They, as service users, caregivers or members of the public, were not solicited for data collection, analysis, interpretation or preparation of the manuscript.


Asunto(s)
Infecciones Relacionadas con Catéteres , Cateterismo Venoso Central , Cateterismo Periférico , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Catéteres de Permanencia/efectos adversos , Incidencia , Vancomicina , Estudios Prospectivos , Furosemida , Cateterismo Periférico/efectos adversos , Factores de Riesgo , Investigación Empírica , Cateterismo Venoso Central/efectos adversos , Infecciones Relacionadas con Catéteres/etiología
7.
PLoS Comput Biol ; 17(8): e1009308, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383754

RESUMEN

DNA is a complex molecule carrying the instructions an organism needs to develop, live and reproduce. In 1953, Watson and Crick discovered that DNA is composed of two chains forming a double-helix. Later on, other structures of DNA were discovered and shown to play important roles in the cell, in particular G-quadruplex (G4). Following genome sequencing, several bioinformatic algorithms were developed to map G4s in vitro based on a canonical sequence motif, G-richness and G-skewness or alternatively sequence features including k-mers, and more recently machine/deep learning. Recently, new sequencing techniques were developed to map G4s in vitro (G4-seq) and G4s in vivo (G4 ChIP-seq) at few hundred base resolution. Here, we propose a novel convolutional neural network (DeepG4) to map cell-type specific active G4 regions (e.g. regions within which G4s form both in vitro and in vivo). DeepG4 is very accurate to predict active G4 regions in different cell types. Moreover, DeepG4 identifies key DNA motifs that are predictive of G4 region activity. We found that such motifs do not follow a very flexible sequence pattern as current algorithms seek for. Instead, active G4 regions are determined by numerous specific motifs. Moreover, among those motifs, we identified known transcription factors (TFs) which could play important roles in G4 activity by contributing either directly to G4 structures themselves or indirectly by participating in G4 formation in the vicinity. In addition, we used DeepG4 to predict active G4 regions in a large number of tissues and cancers, thereby providing a comprehensive resource for researchers. Availability: https://github.com/morphos30/DeepG4.


Asunto(s)
Aprendizaje Profundo , G-Cuádruplex , Algoritmos , Inmunoprecipitación de Cromatina , Genoma , Humanos , Neoplasias/genética , Neoplasias/patología , Redes Neurales de la Computación
8.
Environ Res ; 214(Pt 4): 114057, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35995225

RESUMEN

Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.


Asunto(s)
COVID-19 , Purificación del Agua , Anaerobiosis , Animales , COVID-19/epidemiología , Bovinos , Humanos , ARN , SARS-CoV-2/genética , Aguas del Alcantarillado , Aguas Residuales , Purificación del Agua/métodos
9.
Nucleic Acids Res ; 48(3): 1206-1224, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31799607

RESUMEN

The histone demethylase LSD1 is a key chromatin regulator that is often deregulated in cancer. Its ortholog, dLsd1 plays a crucial role in Drosophila oogenesis; however, our knowledge of dLsd1 function is insufficient to explain its role in the ovary. Here, we have performed genome-wide analysis of dLsd1 binding in the ovary, and we document that dLsd1 is preferentially associated to the transcription start site of developmental genes. We uncovered an unanticipated interplay between dLsd1 and the GATA transcription factor Serpent and we report an unexpected role for Serpent in oogenesis. Besides, our transcriptomic data show that reducing dLsd1 levels results in ectopic transposable elements (TE) expression correlated with changes in H3K4me2 and H3K9me2 at TE loci. In addition, our results suggest that dLsd1 is required for Piwi dependent TE silencing. Hence, we propose that dLsd1 plays crucial roles in establishing specific gene expression programs and in repressing transposons during oogenesis.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Factores de Transcripción GATA/genética , Oogénesis/genética , Oxidorreductasas N-Desmetilantes/genética , Animales , Proteínas Argonautas/genética , Cromatina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes del Desarrollo/genética , Histonas/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Sitio de Iniciación de la Transcripción
10.
J Environ Manage ; 301: 113866, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624574

RESUMEN

The uses of bivalve molluscs in environmental biomonitoring have recently gained momentum due to their ability to indicate and concentrate human pathogenic microorganisms. In the context of the health crisis caused by the COVID-19 epidemic, the objective of this study was to determine if the SARS-CoV-2 ribonucleic acid genome can be detected in zebra mussels (Dreissena polymorpha) exposed to raw and treated urban wastewaters from two separate plants to support its interest as bioindicator of the SARS-CoV-2 genome contamination in water. The zebra mussels were exposed to treated wastewater through caging at the outlet of two plants located in France, as well as to raw wastewater in controlled conditions. Within their digestive tissues, our results showed that SARS-CoV-2 genome was detected in zebra mussels, whether in raw and treated wastewaters. Moreover, the detection of the SARS-CoV-2 genome in such bivalve molluscans appeared even with low concentrations in raw wastewaters. This is the first detection of the SARS-CoV-2 genome in the tissues of a sentinel species exposed to raw and treated urban wastewaters. Despite the need for development for quantitative approaches, these results support the importance of such invertebrate organisms, especially zebra mussel, for the active surveillance of pathogenic microorganisms and their indicators in environmental waters.


Asunto(s)
Bivalvos , COVID-19 , Dreissena , Animales , Dreissena/genética , Humanos , SARS-CoV-2 , Aguas Residuales
11.
Water Sci Technol ; 86(3): 482-495, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35960832

RESUMEN

Stringent discharge regulations are encouraging researchers to create innovative and sustainable wastewater treatment solutions. Urine source separation (USS) is among the potent approaches that may reduce nutrient peak loads in the influent wastewater and improve nutrient recovery. A phenomenological model was used to simulate dynamic influent properties and predict the advantages gained from implementing USS in an urban water basin. Several scenarios were investigated assuming different levels of deployment: at the entire city, or specifically in office buildings for men's urine only, or for both men and women employees. The results confirmed that all scenarios of urine source separation offered benefits at the treatment plant in terms of reducing nitrogen influent load. The economic benefits in terms of reducing energy consumption for nitrification and decreasing methanol addition for denitrification were quantified, and results confirmed environmental advantages gained from different USS scenarios. Despite larger advantages gained from a global USS rate in an entire city, implementation of a specific USS in office buildings would remain more feasible from a logistical perspective. A significant benefit in terms of reducing greenhouse gas emissions is demonstrated and this was especially due to the high level of N2O emissions avoided in nitrifying biological aerated filter.


Asunto(s)
Purificación del Agua , Agua , Desnitrificación , Femenino , Humanos , Masculino , Nitrificación , Nitrógeno , Óxido Nitroso/análisis , Aguas Residuales , Purificación del Agua/métodos
12.
J Fish Biol ; 97(2): 444-452, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32412670

RESUMEN

Monitoring freshwater fish communities in a large human-impacted river is a challenging task. The structure of fish assemblages has been monitored yearly in the Marne and the Seine Rivers, across the Paris conurbation, France, using traditional electrofishing (EF) surveys since 1990, in accordance with the European Water Framework Directive. In addition, metabarcoding of DNA extracted from environmental samples (eDNA) was concomitantly conducted in nine sampling sites in 2017 and in 2018 to compare the estimates of species richness and relative abundance among three methods: annual, long-term EF monitoring and eDNA. The present study confirms better detection of fish species using eDNA compared to annual EF. eDNA metabarcoding was also more efficient for species detection than a 3-6-year EF survey but was similar or less efficient than a long-term EF survey of 14 years of monitoring. In addition, the numbers of reads per species relative to the total number of reads significantly increased with (a) increasing relative abundance (relative percentage of individuals caught per species) and (b) increasing number of years that a fish species was detected during the 2000-2018 period. These results suggest that eDNA could reflect local population persistence.


Asunto(s)
Biodiversidad , ADN Ambiental/aislamiento & purificación , Monitoreo del Ambiente/métodos , Peces/fisiología , Agua Dulce , Ríos , Animales , ADN/genética , Código de Barras del ADN Taxonómico/métodos , Peces/clasificación , Peces/genética , Francia , Encuestas y Cuestionarios
13.
Environ Monit Assess ; 191(7): 421, 2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31177336

RESUMEN

Gaining rapid knowledge of dissolved organic matter (DOM) proves to be decisive for wastewater treatment plant operators in efforts to achieve good treatment efficiency in light of current legislation. DOM can be monitored by application of fluorescence spectroscopy both online and in real time in order to derive an assessment of DOM oxidation potential. This work presents an eco-friendly alternative method for measuring the soluble chemical oxygen demand (COD) in raw sewage by means of three-dimensional fluorescence spectroscopy. A peak-picking approach has been developed based on a previous parallel factor analysis (PARAFAC) model dedicated to Paris raw sewage. Fluorescence spectroscopy parameters were used to obtain a good prediction model of soluble COD (r2 = 0.799; p < 0.0001; n = 80) for raw sewage. The approach employed in this study serves as a guideline for purposes of implementing online wastewater monitoring and conducting environmentally friendly soluble COD measurements in the laboratory.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno/métodos , Monitoreo del Ambiente/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Análisis Factorial , Sustancias Húmicas/análisis , Aguas del Alcantarillado/química , Espectrometría de Fluorescencia/métodos
14.
Bioprocess Biosyst Eng ; 37(2): 289-300, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23793755

RESUMEN

A wastewater biofiltration model is used to assess its capacity to reproduce the treatment behaviour of a plant-sized tertiary nitrifying biofilter unit. It is calibrated on two different types of datasets collected at the Seine-Aval biofiltration plant (Achères, France): grab samples at several heights inside the media bed and a long-term daily plant monitoring over a 1-year period. The model parameters are first calibrated to fit the dynamics observed in the media bed, after which the model is compared to the second dataset. Further parameter changes are then made if necessary and the model is once again compared to both datasets to ensure its ability to predict the treatment behaviour on both size scales. The calibrated model provides correct predictions for most observed nutrient variables for both datasets. An overestimation of the oxygen transfer under a summer, low ammonia load period however leads to a slight underestimation of the nitrifying efficiency of the biofilters. Statistical score computation corroborates the model accuracy as the mean error scores usually remain low. They also point to a certain weakness of the model regarding the suspended solids filtration. Both datasets are overall correctly modelled using a single parameter set. Most of this parameter set is close to or contained in value ranges found in the literature. The parameters related to aeration, however, seem to be slightly higher than what is reported elsewhere.


Asunto(s)
Nitrificación , Aire , Filtración/métodos , Modelos Teóricos
15.
Heliyon ; 10(9): e30614, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726162

RESUMEN

Microorganisms play an important role in maintaining the proper functioning of river ecosystems and are promising candidates for environmental indicators. They are also highly sensitive to environmental changes. It is necessary to have basic knowledge about them in order to know the ecological status of river ecosystem. To our knowglege, there is very little information on the status of microorganisms in surface water of the Seine River, although the Seine River is one of the rivers that suffers the greatest impact from humain activities in the world due to a weak dilution effect. It is therefore necessary to carry out a microbial analysis to assess the ecological status of the Seine River and to use it as a reference to compare with the future state when, for instance, new disinfection technologies of wastewater are implemented. To this end, the microbial communities of the Seine surface water were analyzed, taking into account the spatial effect, including the tributaries, and from upstream to downstream of the Paris conurbation and the temporal aspect, with a monitoring over 4 seasons. The results showed that the microbiome of the water is highly diverse and involved a variety of functions. The main phyla making up the surface water microbiome were Proteobacteria, Actinobacteriota, Firmicutes, Bacteroidota, while other minor phyla were Deinococcota, Patescibacteria, Gemmatimonadota, Cyanobacteria, Bdellovibrionota, Acidobacteriota, Campilobacterota, Myxococcota, and Desulfobacterota. Overall, the microbial community did not change spatially (with the exception of some minor differences between upstream and downstream), but did vary seasonally. The main factors influencing this microbiome were temperature, nitrate and orthophosphate concentrations. The main predicted functions were related to cell metabolism, in particular carbohydrates, amino acids, lipids, energy, vitamins and cofactors, and cell mobility. The microbial compositions showed a strong balance between microbial groups and were involved in the degradation of recalcitrant compounds.

16.
Environ Sci Pollut Res Int ; 31(7): 10501-10507, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38196043

RESUMEN

During wet weather events, combined sewer overflows (CSOs) transfer large amount of particulate matter and associated pollutants into surrounding water bodies, thereby deteriorating the recipients' ecological health. Resuspension of sewer sediments during these events contributes significantly to pollution level of these discharges. However, how much this in-sewer process contributes to CSOs' quality regarding microplastic (MP) pollution is little known. Therefore, an investigation on sewer deposits inside the Parisian combined sewer network was carried out. The study found high MP concentrations stored in this matrix, ranging from 5 × 103 to 178 × 103 particle/kg dry weight. Polymer composition is similar to what found in raw wastewater, containing a high proportion of polyethylene and polypropylene. Thus, the results indicated the persistence of MPs in sewer network during transport during dry weather periods to treatment facilities. Once resuspension of sewer deposits happens, MPs can be released into water flow and get discharged along with CSOs. This highlights another potential pathway of MPs into freshwater environment.


Asunto(s)
Microplásticos , Aguas del Alcantarillado , Plásticos , Paris , Agua , Lluvia
17.
Water Sci Technol ; 65(9): 1713-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22508137

RESUMEN

This work aims to compare the operation costs (energy, reagents, waste management) for the three layouts usually used in wastewater treatment plants incorporating biofilters, using technical and economical data acquired during 10 years of operation of a Parisian plant (Seine Centre, 240,000 m(3) d(-1) -800,000 equivalent inhabitants). The final objective is to establish general economical data and tendencies that can be translated from our study to any biofiltration plant. Our results evidenced the savings achieved through the treatment process combining upstream and downstream denitrification. To use this layout reduced the operating costs by some 10% as compared with conventional processing only comprising downstream denitrification. Operating costs were respectively estimated at 37 and 34 €/1,000 m(3) for downstream denitrification and combining upstream and downstream denitrification layouts.


Asunto(s)
Ciudades , Eliminación de Residuos Líquidos/economía , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/economía , Amoníaco/química , Nitratos/química , Factores de Tiempo , Purificación del Agua/economía , Purificación del Agua/métodos
18.
Water Sci Technol ; 65(9): 1705-12, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22508136

RESUMEN

One of the largest wastewater treatment plants in the Paris conurbation (240,000 m(3)/d) has been studied over several years in order to provide technical and economical information about biological treatment by biofiltration. Biofiltration systems are processes in which carbon and nitrogen pollution of wastewater are treated by ascendant flow through immersed fixed cultures. This paper, focused on technical information, aims: (1) to compare performances of the three biological treatment layouts currently used in biofiltration systems: upstream denitrification (UD), downstream denitrification (DD) and combined upstream-downstream denitrification (U-DD) layouts; and (2) to describe in detail each treatment step. Our study has shown that more than 90% of the carbon and ammoniacal pollution is removed during biological treatment, whatever the layout used. Nitrate, produced during nitrification, is then reduced to atmospheric nitrogen. This reduction is more extensive when the denitrification stage occurs downstream from the treatment (DD layout with methanol addition), whereas it is only partial when it is inserted upstream from the treatment (UD layout - use of endogenous carbonaceous substrate). So, the UD layout leads to a nitrate concentration that exceeds the regulatory threshold in the effluent, and the treatment must be supplemented with a post-denitrification step (U-DD layout). Our work has also shown that the optimal ammonium-loading rate is about 1.1-1.2 kg N-NH(4)(+) per m(3) media (polystyrene) and day. For denitrification, the optimal nitrate-loading rate is about 2.5 kg N per m(3) media (expanded clay) and day in the case of DD with methanol, and is about 0.25 kg N-NO(3)(-) per m(3) media and day in the case of UD with exogenous carbonaceous substrate.


Asunto(s)
Carbono/química , Ciudades , Filtración/métodos , Nitrógeno/química , Contaminantes Químicos del Agua/química , Factores de Tiempo , Eliminación de Residuos Líquidos , Contaminación Química del Agua
19.
Environ Pollut ; 303: 119165, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35306089

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic environments and a recent shift toward emerging PFAS is calling for new data on their occurrence and fate. In particular, understanding the determinants of their bioaccumulation is fundamental for risk assessment purposes. However, very few studies have addressed the combined influence of potential ecological drivers of PFAS bioaccumulation in fish such as age, sex or trophic ecology. Thus, this work aimed to fill these knowledge gaps by performing a field study in the Seine River basin (France). Composite sediment and fish (European chub, Squalius Cephalus) samples were collected from four sites along a longitudinal transect to investigate the occurrence of 36 PFAS. Sediment molecular patterns were dominated by fluorotelomer sulfonamidoalkyl betaines (i.e. 6:2 and 8:2 FTAB, 46% of ∑PFAS on average), highlighting the non-negligible contribution of PFAS of emerging concern. C9-C14 perfluoroalkyl carboxylic acids, perfluorooctane sulfonic acid (PFOS), perfluorooctane sulfonamide (FOSA) and 10:2 fluorotelomer sulfonate (10:2 FTSA) were detected in all fish samples. Conversely, 8:2 FTAB was detected in a few fish from the furthest downstream station only, suggesting the low bioaccessibility or the biotransformation of FTABs. ∑PFAS in fish was in the range 0.22-3.8 ng g-1 wet weight (ww) and 11-140 ng g-1 ww for muscle and liver, respectively. Fish collected upstream of Paris were significantly less contaminated than those collected downstream, pointing to urban and industrial inputs. The influence of trophic ecology and biometry on the interindividual variability of PFAS burden in fish was examined through analyses of covariance (ANCOVAs), with sampling site considered as a categorical variable. While the latter was highly significant, diet was also influential; carbon sources and trophic level (i.e. estimated using C and N stable isotope ratios, respectively) equally explained the variability of PFAS levels in fish.


Asunto(s)
Ácidos Alcanesulfónicos , Cyprinidae , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Animales , Bioacumulación , Monitoreo del Ambiente , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 809: 151109, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34688739

RESUMEN

Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within 1-2mgPL-1. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conventional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70-98% phosphorus without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted by the addition of metal coagulant to ensure >95% P-removal. MBRs are successfully used for super-large-scale wastewater treatment facilities (capacity >100,000 m3d-1). This paper documents the knowledge of P-removal modeling from lab to full-scale submerged MBRs and assesses the existing mathematical models for P-removal from domestic wastewater. There are still limited studies involving integrated modeling of the MBRs (full/super large-scale), considering the complex interactions among biology, chemical addition, filtration, and fouling. This paper analyses the design configurations and the parameters affecting the biological and chemical P-removal in MBRs to understand the P-removal process sensitivity and their implications for the modeling studies. Furthermore, it thoroughly reviews the applications of bio-kinetic and chemical precipitation models to MBRs for assessing their effectiveness with default stoichiometric and kinetic parameters and the extent to which these parameters have been calibrated/adjusted to simulate the P-removal successfully. It also presents a brief overview and comparison of seven (7) chemical precipitation models, along with a quick comparison of commercially available simulators. In addition to advantages associated with chemical precipitation for P-removal, its role in changing the relative abundance of the microbial community responsible for P-removal and denitrification and the controversial role in fouling mitigation/increase are discussed. Lastly, it encompasses several coagulant dosing control systems and their applications in the pilot to full-scale facilities to save coagulants and optimize the P-removal performance.


Asunto(s)
Membranas Artificiales , Eliminación de Residuos Líquidos , Reactores Biológicos , Aguas del Alcantarillado , Aguas Residuales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda