Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Environ Manage ; 370: 122508, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366238

RESUMEN

One of the factors that has a direct impact on anaerobic digestion is the applied organic loading rate (OLRA). Increasing OLRA can boost methane production but can also cause process failure. As a result, establishing the appropriate OLRA for the procedure is critical. This study evaluated the effect of increasing the OLRA using soybean molasses in a thermophilic anaerobic reactor (R-Thermo), as well as the effect of feeding strategy and co-processing with okara. Furthermore, the performance versus stability trade-off between R-Thermo and mesophilic anaerobic digestion (R-Meso) was investigated. The increase of OLRA from 10 to 15 and 20 kg-COD/m³/d led to a decrease in COD removal efficiency (90, 86, and 75%), methane yield (12.0, 11.6, and 9.9 mol-CH4/kg-COD) and an increase in total volatile acids concentration (251, 456, and 1393 mg-HAc/L, respectively). At 15 kg-COD/m³/d, R-Meso performed similarly to R-Thermo, and at 20 kg-COD/m3/d, R-Meso outperformed (81% COD removal efficiency, 9.3 mol-CH4/kg-CODrem and 154.5 mol-CH4/m3/d). Temperature greatly influenced the distribution of metabolic pathways, as shown by thermodynamic and kinetic analyses, thus impacting bacterial diversity. At 55 °C, amongst the bacterial genera, Tepidiphilus stood out (>28.2%), followed by Acetomicrobium, Coprothermobacter and Candidatus_Caldatribacterium. The OLRA clearly impacted the archaeal community; Methanothermobacter (77.4%) was favored over Methanosarcina (14.8%). Under thermophilic temperature, it seems that syntrophic acetate oxidation (SAO) bacteria might have competed for substrate with acetoclastic methanogens, while in R-Meso microorganisms responsible for the initial steps of organic matter breakdown, such as members of the Firmicutes and Proteobacteria phyla (at least 67%), were dominant. In summary, R-Meso, characterized by a more uniform distribution of metabolic pathways, as well as a diverse and well-adapted microbial consortium, have exhibited enhanced stability and outperformed R-Thermo at high-loads.

2.
J Environ Manage ; 348: 119215, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827083

RESUMEN

Anaerobic digestion has emerged as the most appealing waste management strategy in biorefineries. Particularly, recent studies have highlighted the energy advantages of waste co-digestion in industrial biorefineries and the use of two-stage systems. However, there are some concerns about moving the system from laboratory testing to industrial scale. One of them is the high level of investment that is required. Therefore, this study carried out a techno-economic analysis (scale-up and energy production, economic and risk analysis, and factorial design) to assess the feasibility of single- and two-stage systems in the treatment of cheese whey and glycerin for the production of hydrogen and methane. Scenarios (S1 to S9) considered thermophilic and mesophilic single and two-stage systems with different applied organic loading rates (OLRA). The analyses of scale-up and energy production revealed that S3 (a thermophilic single-stage system operated at high OLRA 17.3 kg-COD.m-3.d-1) and S9 (a thermophilic-mesophilic two-stage system operated at high OLRA 134.8 kg-COD.m-3.d-1 and 20.5 kg-COD.m-3.d-1, respectively) were more compact and required lower initial investment compared to other scenarios. The risk analysis performed by a Monte Carlo simulation showed low investment risks (10 and 11%) for S3 and S9, respectively, being the electricity sales price, the key determining factor to define whether the project in the baseline scenario will result in profit or loss. Lastly, the factorial design revealed that while the net present value (NPV) is positively impacted by rising inflation and electricity sales price, it is negatively impacted by rising capitalization rate. Such assessments assist in making decisions regarding which system can be fully implemented, the best market circumstances for the investment, and how market changes may favorably or unfavorably affect the NPV and the internal rate of return (IRR).


Asunto(s)
Reactores Biológicos , Metano , Anaerobiosis , Hidrógeno , Medición de Riesgo
3.
J Environ Manage ; 330: 117117, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584460

RESUMEN

Anaerobic digestion for CH4 recovery in wastewater treatment has been carried out with different strategies to increase process efficiency, among which co-digestion and the two-stage process can be highlighted. In this context, this study aimed at evaluating the co-digestion of cheese whey and glycerol in a two-stage process using fluidized bed reactors, verifying the effect of increasing the organic loading rate (OLR) (2-20 g-COD.L-1.d-1) and temperature (thermophilic and mesophilic) in the second stage methanogenic reactor. The mesophilic methanogenic reactor (R-Meso) (mean temperature of 22 °C) was more tolerant to high OLR and its best performance was at 20 g-COD.L-1.d-1, resulting in methane yield (MY) and methane production (MPR) of 273 mL-CH4.g-COD-1 and 5.8 L-CH4.L-1.d-1 (with 67% of CH4), respectively. Through 16S rRNA gene massive sequencing analysis, a greater diversity of microorganisms was identified in R-Meso than in R-Thermo (second stage methanogenic reactor, 55 °C). Firmicutes was the phyla with higher relative abundance in R-Thermo, while in R-Meso the most abundant ones were Proteobacteria and Bacteroidetes. Regarding the Archaea domain, a predominance of hydrogenotrophic microorganisms could be observed, being the genera Methanothermobacter and Methanobacterium the most abundant in R-Thermo and R-Meso, respectively. The two-stage system composed with a thermophilic acidogenic reactor + R-Meso was more adequate for the co-digestion of cheese whey and glycerol than the single-stage process, promoting increases of up to 47% in the energetic yield (10.3 kJ.kg-COD-1) and 14% in organic matter removal (90.5%).


Asunto(s)
Queso , Euryarchaeota , Suero Lácteo/química , Anaerobiosis , Temperatura , Glicerol , ARN Ribosómico 16S , Metano/análisis , Digestión , Reactores Biológicos/microbiología
4.
J Environ Manage ; 145: 385-93, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25127066

RESUMEN

This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Brasil , Cinética , Methanosarcina/crecimiento & desarrollo , Modelos Teóricos , Proyectos Piloto , Temperatura , Purificación del Agua/instrumentación , Purificación del Agua/métodos
5.
Rev Port Cardiol ; 42(9): 759-769, 2023 09.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-36948457

RESUMEN

INTRODUCTION: Current rates of permanent pacemaker implantation (PPMI) after transcatheter aortic valve implantation (TAVI) range between 3.4% and 25.9%. PPMI is associated with a worse prognosis. A lower valve implantation depth is associated with an increased risk of conduction disturbances. Theoretically, cusp-overlap projection (COP) has the potential to enable higher valve deployment. OBJECTIVE: To compare the 30-day PPMI incidence post-TAVI using self-expanding valves according to the fluoroscopic guidance technique. METHODS: This retrospective single-center study assessed consecutive patients undergoing TAVI with CoreValve™ valves between April 2019 and November 2021, grouped according to the fluoroscopic guidance technique (COP vs. coplanar implantation technique [CIT]). RESULTS: A total of 122 patients were included, predominantly women (52.5%), with a mean age of 81.6±5.5 years. COP was used in 49.2% of the sample. The CIT group had a significantly higher prevalence of previous beta-blocker use (p<0.01), lower baseline left ventricular ejection fraction (p=0.04) and a higher EuroSCORE II (p=0.02). The 30-day PPMI rate was 27.9% (n=34), with no significant difference between the COP and CIT groups (26.7% vs. 29.0%, p=0.77). Complete atrioventricular block was the main cause (38.5%). Likewise, mean fluoroscopy time (p=0.14) and contrast volume (p=0.35) used were similar between the two groups. Radiation dose was lower in the COP group (p=0.02). There was no significant difference between post-TAVI grades III and IV aortic valve regurgitation (p=0.27) and there were no cases of periprocedural acute coronary occlusion. CONCLUSIONS: This study shows that the COP technique, although safe and not associated with increased complexity, did not significantly reduce the 30-day PPMI rate compared to the traditional CIT view.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Marcapaso Artificial , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Volumen Sistólico , Incidencia , Estudios Retrospectivos , Resultado del Tratamiento , Factores de Riesgo , Función Ventricular Izquierda
6.
Rev Port Cardiol ; 30(1): 65-72, 2011 Jan.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-21425744

RESUMEN

Left main coronary aneurysm is extremely uncommon and its precise pathogenesis remains poorly understood. They are associated with serious complications and treatment is still the subject of disagreement. The authors present the case of a 42-year-old man admitted for a coronary syndrome, whose coronary angiogram revealed a large left main coronary aneurysm. The echocardiogram and multi-row detector CT angiography confirmed the abnormalities observed. No positive findings resulted from etiological evaluation. We decided to maintain the patient under oral anticoagulation and he remains clinically stable after two years of follow-up.


Asunto(s)
Aneurisma Coronario/diagnóstico por imagen , Adulto , Aneurisma Coronario/tratamiento farmacológico , Ecocardiografía Transesofágica/métodos , Humanos , Masculino , Tomografía Computarizada por Rayos X/métodos
7.
J Environ Manage ; 91(12): 2499-504, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20675039

RESUMEN

A mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass was applied to the treatment of a wastewater simulating the effluent from a personal care industry. The ASBR was operated with cycle lengths (t(C)) of 8, 12 and 24 h and applied volumetric organic loads (AVOL) of 0.75, 0.50 and 0.25 gCOD/L.d, treating 2.0 L liquid medium per cycle. Stirring frequency was 150 rpm and the reactor was kept in an isothermal chamber at 30 °C. Increase in t(C) resulted in efficiency increase at constant AVOL, reaching 77% at t(C) of 24 h versus 69% at t(C) of 8 h. However, efficiency decreased when AVOL decreased as a function of increasing t(C), due to the lack of substrate in the reaction medium. Moreover, replacing part of the wastewater by a chemically balanced synthetic one did not yield the expected effect and system efficiency dropped.


Asunto(s)
Reactores Biológicos , Dodecil Sulfato de Sodio/química , Administración de Residuos/métodos , Contaminantes Químicos del Agua/química , Anaerobiosis , Preparaciones para el Cabello , Residuos Industriales
8.
J Environ Manage ; 91(8): 1647-56, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20363066

RESUMEN

The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m(3), treated 0.65 m(3) sanitary wastewater at ambient temperature in 8-h cycles. Three impeller types were assessed for each reactor configuration: flat-blade turbine impeller, 45 degrees -inclined-blade turbine impeller and helix impeller, as well as two agitation rates: 40 and 80 rpm, resulting in a combination of six experimental conditions. In addition, the ASBR was also operated at 20 rpm with a flat-blade turbine impeller and the AnSBBR was operated with a draft tube and helix impeller at 80 and 120 rpm. To quantify how impeller type and agitation rate relate to substrate consumption rate, results obtained during monitoring at the end of the cycle, as well as the time profiles during a cycle were analyzed. Increasing agitation rate from 40 rpm to 80 rpm in the AnSBBR improved substrate consumption rate whereas in the ASBR this increase destabilized the system, likely due to granule rupture caused by the higher agitation. The AnSBBR showed highest solids and substrate removal, highest kinetic constant and highest alkalinity production when using a helix impeller, 80 rpm, and no draft tube. The best condition for the ASBR was achieved with a flat-blade turbine impeller at 20 rpm. The presence of the draft tube in the AnSBBR did not show significant improvement in reactor efficiency. Furthermore, power consumption studies in these pilot scale reactors showed that power transfer required to improve mass transfer might be technically and economically feasible.


Asunto(s)
Reactores Biológicos , Saneamiento/métodos , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Reactores Biológicos/microbiología , Brasil , Poliuretanos , Aguas del Alcantarillado
9.
J Environ Manage ; 90(10): 3070-81, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19497659

RESUMEN

The objective of this work was to study the technological feasibility of treating wastewater from a personal care industry (PCI-WW) in a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass on polyurethane foam. An assessment was made on how system efficiency and stability would be affected by: increasing organic load; supplementation of nutrients and alkalinity; and different feed strategies. The AnSBBR operated with 8-h cycles, stirring speed of 400 rpm, temperature of 30 degrees C, and treated with 2.0 L wastewater per cycle. First the efficiency and stability of the AnSBBR were studied when submitted to an organic loading rate (OLR) of 3.1-9.4 gCOD/(L d), and when the PCI-WW was supplemented with nutrients (sucrose, urea, trace metals) and alkalinity. The AnSBBR was shown to be robust and presented stability and removal efficiency exceeding 90%. At an OLR of 12.0 gCOD/(L d) efficiency became difficult to maintain due to the presence of commercial cleansers and disinfectants in the wastewater lots. In a subsequent stage the AnSBBR treated the wastewater supplemented with alkalinity, but with no nutrients at varying feed strategies and maintaining an OLR of approximately 9.0 gCOD/(L d). The first strategy consists of feeding 2.0 L of the influent batchwise [OLR of 9.4 gCOD/(L d)]. In the second 1.0 L of influent was fed-batchwise and an additional 1.0 L was fed fed-batchwise [OLR of 9.2 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was maintained but supplied in different periods. In the third strategy 1.0 L of treated effluent was maintained in the reactor and 1.0 L of influent was fed fed-batchwise [OLR of 9.0 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was different but the feed period was the same and the OLR was maintained by increasing the influent concentration. Comparison of the first and second strategies revealed that organic matter removal efficiency was unaffected (exceeding 90%). The third strategy resulted in a reduction in average removal efficiency from 91 to 83% when compared to the first one. A kinetic study resulted in first order kinetic parameters ranges from 0.42 to 1.46 h(-1) at OLRs from 3.1 to 12.0 gCOD/(L d), respectively, and the second feed strategy [OLR of 9.2 gCOD/(L d)] was shown to be the most favorable.


Asunto(s)
Reactores Biológicos , Residuos Industriales , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Biodegradación Ambiental , Biopelículas
10.
Appl Biochem Biotechnol ; 189(4): 1039-1055, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31165392

RESUMEN

Stillage is an abundant wastewater from the sugarcane ethanol industry. It is rich in fermentable substrates and presents low-nutrient content, constituting a promising substrate for polyhydroxyalkanoate (PHA) production by mixed microbial cultures (MMC). This work assessed the enrichment of a PHA-accumulating MMC from acidified sugarcane stillage in a sequencing batch reactor under increasing organic loading rates (OLR) and no external nutrient supplementation. The OLR was increased from 1.0 to 7.1 kg COD m-3 day-1 in four steps. A PHA-producing MMC with high storage response was selected in all experimental conditions. The volumetric biomass productivity and the maximal PHA storage capacity increased continuously with the OLR, reaching 0.061 g VSS L-1 h-1 and 0.49 g PHA g VSS-1, respectively. The highest observed PHA storage yield (0.60 g CODPHA g COD.t-1) and specific PHA storage rate (0.169 g CODPHA g of CODX h-1) were obtained for the OLR of 4.5 kg COD m-3 day-1. The PHA produced was a co-polymer of 3-hydroxybutyrate (86-77%mol) and 3-hydroxyvalerate (14-23%mol). The performance of the biomass enrichment was comparable to those attained with other agro-industrial wastewaters, indicating the potential of acidified sugarcane stillage as a feedstock for MMC PHA production.


Asunto(s)
Biomasa , Consorcios Microbianos , Polihidroxialcanoatos/metabolismo , Saccharum , Aguas Residuales/microbiología
11.
Bioresour Technol ; 99(8): 3256-66, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17669646

RESUMEN

Safe application of the anaerobic sequencing biofilm batch reactor (ASBBR) still depends on deeper insight into its behavior when faced with common operational problems in wastewater treatments such as tolerance to abrupt variations in influent concentration, so called shock loads. To this end the current work shows the effect of organic shock loads on the performance of an ASBBR, with a useful volume of 5L, containing 0.5-cm polyurethane cubes and operating at 30 degrees C with mechanical stirring of 500 rpm. In the assays 2L of two types of synthetic wastewater were treated in 8-h cycles. Synthetic wastewater I was based on sucrose-amide-cellulose with concentration of 500 mg COD/L and synthetic wastewater II was based on volatile acids with concentration ranging from 500 to 2000 mg COD/L. Organic shock loads of 2-4 times the operation concentration were applied during one and two cycles. System efficiency was monitored before and after application of the perturbation. When operating with concentrations from 500 to 1000 mg COD/L and shock loads of 2-4 times the influent concentration during one or two cycles the system was able to regain stability after one cycle and the values of organic matter, total and intermediate volatile acids, bicarbonate alkalinity and pH were similar to those prior to the perturbations. At a concentration of 2000 mg COD/L the reactor appeared to be robust, regaining removal efficiencies similar to those prior to perturbation at shock loads twice the operation concentration lasting one cycle and stability was recovered after two cycles. However, for shock loads twice the operation concentration during two cycles and shock loads four times the operation concentration during one or two cycles filtered sample removal efficiency decreased to levels different from those prior to perturbation, on an average of 90-80%, approximately, yet the system managed to attain stability within two cycles after shock application. Therefore, this investigation envisions the potential of full scale application of this type of bioreactor which showed robustness to organic shock loads, despite discontinuous operation and the short times available for treating total wastewater volume.


Asunto(s)
Reactores Biológicos , Compuestos Orgánicos , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Biopelículas , Biomasa , Carbonato de Calcio , Concentración de Iones de Hidrógeno , Residuos Industriales
12.
Bioresour Technol ; 99(3): 644-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17336516

RESUMEN

An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.


Asunto(s)
Biopelículas , Reactores Biológicos , Nitrógeno/aislamiento & purificación , Purificación del Agua/métodos , Aerobiosis , Sulfato de Amonio/metabolismo , Bicarbonatos/análisis , Estudios de Factibilidad , Filtración , Nitratos/análisis , Nitritos/análisis , Nitrógeno/análisis , Compuestos Orgánicos/análisis , Aguas del Alcantarillado , Volatilización
13.
Waste Manag ; 82: 37-50, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30509594

RESUMEN

This work used a pilot scale (with a total volume of 1300 L) Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) to treat landfill leachate from São Carlos-SP (Brazil) as well as to evaluate the biomass growth and its behavior. Biomass from the bottom of a landfill leachate stabilization pond was immobilized in polyurethane foam cubes as inoculum. The leachate characteristics varied during the experiment. Ethanol or volatile fatty acids were added as additional substrate when the leachate was temporarily recalcitrant. After acclimation, the AnSBBR presented efficiency over 70% (COD removal). A mass balance model, biomass sampling and temporal concentration profiles were performed to obtain a biomass yield coefficient of YX/S = 0.0251 ±â€¯0.0006 gTVS gCOD removed (r2 = 0.999). Additionally, it was observed that a variable fraction of the attached biomass may detach itself or present mobility during the batch time, however returning to fixed bed depending on the substrate type and concentration. This behavior has never been reported by the literature for attached biomass.


Asunto(s)
Contaminantes Químicos del Agua , Anaerobiosis , Biopelículas , Biomasa , Reactores Biológicos , Brasil
14.
Appl Biochem Biotechnol ; 136(2): 193-206, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17496340

RESUMEN

The effect of temperature on the performance of an anaerobic sequencing biofilm batch reactor (ASBBR) with liquid-phase recirculation was assessed. Assays were performed using a recirculation velocity of 0.20 cm/s, 8-h cycles, and an average treated synthetic wastewater volume of 2 L/cycle with a concentration of 500 mg of Chemical Oxygen Demand (COD)/L. Operation temperatures were 15, 20, 25, 30, and 35 degrees C. At 25, 30, and 35 degrees C, organic matter removal efficiencies for filtered samples ranged from 81 to 83%. At lower temperatures, namely 15 and 20 degrees C, removal efficiency decreased significantly to 61 and 65%, respectively. A first-order model could be fitted to the experimental concentration profile values. The first-order kinetic parameter value of this model varied from 0.46 to 0.81 h-1 considering the lowest and highest temperature studied. Moreover, analysis of the removal profile values allowed fitting of an Arrhenius-type equation with an activation energy of 5715 cal/mol.


Asunto(s)
Bacterias Anaerobias/metabolismo , Biopelículas/crecimiento & desarrollo , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Temperatura , Movimientos del Agua , Purificación del Agua
15.
Bioresour Technol ; 245(Pt A): 332-341, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28898828

RESUMEN

Biogas upgrading processes by in-situ hydrogen (H2) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H2 injection into the liquid phase of a fermenter with the aim of modeling and simulating these processes. This was done by including hydrogenotrophic methanogen kinetics for H2 consumption and inhibition effect on the acetogenic steps. Special attention was paid to gas to liquid transfer of H2. The final model was successfully validated considering a set of Case Studies. Biogas composition and H2 utilization were correctly predicted, with overall deviation below 10% compared to experimental measurements. Parameter sensitivity analysis revealed that the model is highly sensitive to the H2 injection rate and mass transfer coefficient. The model developed is an effective tool for predicting process performance in scenarios with biogas upgrading.


Asunto(s)
Biocombustibles , Reactores Biológicos , Euryarchaeota , Hidrógeno , Metano
16.
Appl Biochem Biotechnol ; 133(2): 171-88, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16702609

RESUMEN

The performance of an anaerobic sequencing batch reactor (ASBR) was assessed when submitted to increasing organic load with different influent concentrations and cycle lengths. The 5-L mechanically stirred (75 rpm) ASBR contained 2 L of granular biomass and treated 2 L of synthetic wastewater per cycle. Volumetric organic loads (VOLs) from 0.66 to 2.88 g of chemical oxygen demand (COD)/(L x d) were applied by using influent concentrations from 550 to 3,600 mg of COD/L in 8- and 12-h cycles. Reactor stability was maintained for VOLs from 0.66 to 2.36 g of COD/(L x d), with organic matter removal efficiencies for filtered samples (epsilonF) between 84 and 88%. For VOLs from 0.78 to 2.36 g of COD/(L x d) at an influent concentration of 2,000 mg of COD/L, when cycle length was reduced from 12 to 8 h, epsilonF did not vary, yet showed a very distinct behavior from the other conditions. In addition, two operation strategies were studied for VOLs with approximately similar values of 2.36 and 2.08 g of COD/(L x d). One involved operation with an influent concentration of 2,000 mg of COD/L and an 8-h cycle, whereas the other involved an influent concentration of 2,600 mg of COD/L and a 12-h cycle. Only the former resulted in system stability and efficiency. These results indicate that besides organic load, influent concentration and cycle length play a significant role in ASBR systems.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado/microbiología , Anaerobiosis , Biomasa , Aguas del Alcantarillado/química
17.
Water Res ; 39(11): 2376-84, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15922400

RESUMEN

The main objectives of this study were to evaluate the performance of an anaerobic sequencing batch reactor when subjected to a progressive increase of influent glucose concentration and to estimate the kinetic parameters of glucose degradation. The reactor was initially operated in 8-h cycles, treating glucose in concentrations of 500, 1000 and 2000 mg l(-1). No glucose was detected in the effluent under these three conditions. The reactor showed operating stability when treating a glucose concentration of approximately 500 mg l(-1), with filtered chemical oxygen demand (COD) removal efficiencies varying from 93% to 97%. Operational instability occurred in the operation with glucose concentrations of approximately 1000 and 2000 mg l(-1), caused mainly by a production of extracellular polymeric substances (EPS), which led to hydrodynamic and mass transfer problems in the reactor. The mean volatile acid concentration values in the effluent were approximately 159+/-72 and 374+/-92 mg l(-1), respectively. A first-order model was adjusted to glucose concentration profiles and a modified model, including a residual concentration of substrate, was adjusted to COD temporal profiles. To check the formation of EPS, the reactor was operated in 3-h cycles with concentrations of 500 and 1000 mg l(-1). The purpose of this step was to discover if the production of EPS resulted from the biomass's exposure to a low concentration of substrate over a long period of time. Thus, it was hypothesized that a reduction of the time cycle would also reduce the exposure to low concentrations. However, this hypothesis could not be confirmed because large amounts of EPS were formed already under the first operational condition, using approximately 500 mg l(-1) of glucose in the influent, thus indicating the fallacy of the hypothesis. The production of EPS proved to depend on the organic volumetric load applied to the reactor.


Asunto(s)
Anaerobiosis , Biopelículas , Reactores Biológicos , Aguas del Alcantarillado , Bacterias Anaerobias/metabolismo , Glucosa/metabolismo , Factores de Tiempo , Purificación del Agua
18.
Bioresour Technol ; 96(4): 517-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15491835

RESUMEN

This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters.


Asunto(s)
Bacterias Anaerobias/fisiología , Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Agua/química , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Mecánica , Reología/instrumentación , Reología/métodos , Solubilidad
19.
Appl Biochem Biotechnol ; 120(2): 109-20, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15695840

RESUMEN

Anaerobic sequencing batch reactors containing granular or flocculent biomass have been employed successfully in the treatment of piggery wastewater. However, the studies in which these reactors were employed did not focus specifically on accelerating the hydrolysis step, even though the degradation of this chemical oxygen demand (COD) fraction is likely to be the limiting step in many investigations of this type of wastewater. The mechanically stirred anaerobic sequencing batch biofilm reactor offers an alternative for hastening the hydrolysis step, because mechanical agitation can help to speed up the reduction of particle sizes in the fraction of particulate organic matter. In the present study, a 4.5-L reactor was operated at 30 degrees C, with biomass immobilized on cubic polyurethane foam matrices (1 cm of side) and mechanical stirring provided by three flat-blade turbines (6 cm) at agitation rates varying from 0 to 500 rpm. The reactor was operated to treat diluted swine waste, and mechanical stirring efficiently improved degradation of the suspended COD. The operational data indicate that the reactor remained stable during the testing period. After 2 h of operation at 500 rpm, the suspended COD decreased by about 65% (from 1500 to 380 mg/L). Apparent kinetic constants were also calculated by modified first-order expressions.


Asunto(s)
Bacterias Anaerobias/fisiología , Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Estiércol/microbiología , Eliminación de Residuos Líquidos/instrumentación , Animales , Bacterias Anaerobias/crecimiento & desarrollo , Estudios de Factibilidad , Cinética , Mecánica , Reología/instrumentación , Reología/métodos , Porcinos , Factores de Tiempo , Eliminación de Residuos Líquidos/métodos
20.
Water Res ; 38(19): 4117-24, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15491659

RESUMEN

This work reports on the influence of the agitation rate on the organic matter degradation in an anaerobic sequencing batch reactor, containing biomass immobilized on 3 cm cubic polyurethane matrices, stirred mechanically and fed with partially soluble soymilk substrate with mean chemical oxygen demand (COD) of 974+/-70 mg l(-1). Hydrodynamic studies informed on the homogenization time under agitagion rates from 500 to 1100 rpm provided by three propeller impellers. It occurred very quickly compared to the total cycle time. The results showed that agitation provided good mixing and improved the overall organic matter consumption rates. A modified first-order kinetic model represented adequately the data in the entire range of agitation rate. The apparent first-order kinetic constant for suspended COD rose approximately 360% when the agitation rate was changed from 500 to 900 rpm, whereas the apparent first-order kinetic constant for soluble COD did not vary significantly.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Movimientos del Agua , Bacterias Anaerobias/crecimiento & desarrollo , Bacterias Anaerobias/fisiología , Biomasa , Cinética , Compuestos Orgánicos/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda