Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Nat Methods ; 14(4): 443-449, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28250468

RESUMEN

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.


Asunto(s)
Cristalografía por Rayos X/métodos , Rayos Láser , Acústica , Complejo de Proteína del Fotosistema II/química , Fitocromo/química , Ribonucleótido Reductasas/química , Espectrometría por Rayos X/métodos
2.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 94-103, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615864

RESUMEN

Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s(-1)) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.


Asunto(s)
Acústica , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas/química , Sefarosa/química , Cristalización , Hidrogeles
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1177-89, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24816088

RESUMEN

Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.


Asunto(s)
Acústica , Cristalización/métodos , Proteínas/química , Bibliotecas de Moléculas Pequeñas , Acústica/instrumentación , Cristalización/instrumentación , Cristalografía por Rayos X , Descubrimiento de Drogas , Diseño de Equipo , Muramidasa/química , Termolisina/química , Tripsina/química
4.
J Synchrotron Radiat ; 21(Pt 6): 1231-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25343789

RESUMEN

X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.


Asunto(s)
Cristalografía por Rayos X/métodos , Insulina/química , Insulina/efectos de la radiación , Muramidasa/química , Muramidasa/efectos de la radiación , Dispersión del Ángulo Pequeño , Humanos , Prótesis e Implantes , Solventes/química , Sincrotrones , Difracción de Rayos X
5.
J Synchrotron Radiat ; 21(Pt 3): 627-32, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24763654

RESUMEN

Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Lentes , Sustancias Macromoleculares/química , Sincrotrones/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , New York , Dispersión de Radiación
6.
J Synchrotron Radiat ; 20(Pt 5): 805-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955046

RESUMEN

To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Proteínas/química , Recolección de Datos , Sustancias Macromoleculares , Sincrotrones
7.
Proc Natl Acad Sci U S A ; 105(7): 2343-8, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18227506

RESUMEN

Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a "stepping-stone" method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and lambda. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and lambda. The domains show 40% sequence identity but differ by switching of alpha-helix to beta-sheet in a C-terminal region spanning approximately 25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
8.
Structure ; 24(4): 631-640, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26996959

RESUMEN

X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Enzimas/química , Acústica , Cristalografía por Rayos X/métodos , Modelos Moleculares , Muramidasa/química , Conformación Proteica , Termolisina/química
9.
PLoS One ; 9(7): e101036, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24988328

RESUMEN

High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.


Asunto(s)
Acústica , Cristalografía por Rayos X/métodos , Proteínas/química , Cristalización
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda