Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(27): 6914-6923, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630341

RESUMEN

Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ-specific CD4+ T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α-specific CD8+ T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus de la Hepatitis E/inmunología , Hepatitis E/inmunología , Inmunidad Celular , Huésped Inmunocomprometido , Células TH1/inmunología , Células Th2/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Citocinas/sangre , Citocinas/inmunología , Modelos Animales de Enfermedad , Hepatitis E/sangre , Hepatitis E/inducido químicamente , Virus de la Hepatitis E/metabolismo , Humanos , Inmunosupresores/efectos adversos , Inmunosupresores/farmacología , Porcinos , Células TH1/metabolismo , Células TH1/patología , Células Th2/metabolismo , Células Th2/patología , gamma-Glutamiltransferasa/sangre , gamma-Glutamiltransferasa/inmunología
2.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29643245

RESUMEN

Cytokines are often used as adjuvants to improve vaccine immunogenicity, since they are important in initiating and shaping the immune response. The available commercial modified live-attenuated vaccines (MLVs) against porcine reproductive and respiratory syndrome virus (PRRSV) are unable to mount sufficient heterologous protection, as they typically induce weak innate and inadequate T cell responses. In this study, we investigated the immunogenicity and vaccine efficacy of recombinant PRRSV MLVs incorporated with the porcine cytokine interleukin-15 (IL-15) or IL-18 gene fused to a glycosylphosphatidylinositol (GPI) modification signal that can anchor the cytokines to the cell membrane. We demonstrated that both cytokines were successfully expressed on the cell membrane of porcine alveolar macrophages after infection with recombinant MLVs. Pigs vaccinated with recombinant MLVs or the parental Suvaxyn MLV had significantly reduced lung lesions and viral RNA loads in the lungs after heterologous challenge with the PRRSV NADC20 strain. The recombinant MLVs SUV-IL-15 and SUV-IL-18 recovered the inhibition of the NK cell response seen with Suvaxyn MLV. The recombinant MLV SUV-IL-15 significantly increased the numbers of gamma interferon (IFN-γ)-producing cells in circulation at 49 days postvaccination (dpv), especially for IFN-γ-producing CD4- CD8+ T cells and γδ T cells, compared to the Suvaxyn MLV and SUV-IL-18. Additionally, MLV SUV-IL-15-vaccinated pigs also had elevated levels of γδ T cell responses observed at 7 dpv, 49 dpv, and 7 days postchallenge. These data demonstrate that the recombinant MLV expressing membrane-bound IL-15 enhances NK and T cell immune responses after vaccination and confers improved heterologous protection, although this was not statistically significant compared to the parental MLV.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) has arguably been the most economically important global swine disease, causing immense economic losses worldwide. The available commercial modified live-attenuated vaccines (MLVs) against PRRS virus (PRRSV) are generally effective against only homologous or closely related virus strains but are ineffective against heterologous strains, partially due to the insufficient immune response induced by the vaccine virus. To improve the immunogenicity of MLVs, in this study, we present a novel approach of using porcine IL-15 or IL-18 as an adjuvant by directly incorporating its encoding gene into a PRRSV MLV and expressing it as an adjuvant. Importantly, we directed the expression of the incorporated cytokines to the cell membrane surface by fusing the genes with a membrane-targeting signal from CD59. The recombinant MLV virus expressing the membrane-bound IL-15 cytokine greatly enhanced NK cell and γδ T cell responses and also conferred improved protection against heterologous challenge with the PRRSV NADC20 strain.


Asunto(s)
Adyuvantes Inmunológicos , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Enfermedades Pulmonares/prevención & control , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Linfocitos T/inmunología , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Interacciones Huésped-Patógeno , Interleucina-15/inmunología , Riñón/inmunología , Riñón/virología , Células Asesinas Naturales/virología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Porcinos , Linfocitos T/virología , Vacunación , Viremia/inmunología , Viremia/virología
3.
J Gen Virol ; 99(2): 230-239, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29300158

RESUMEN

Porcine epidemic diarrhea virus (PEDV) poses a serious threat to swine worldwide as evidenced by its recent introduction into the USA and the devastating economic impact it caused to the USA swine industry. Commercial vaccines against PEDV are available but their efficacies are inadequate. Therefore, vaccines with improved efficacy are needed to effectively control PEDV infections. We previously determined the immunogenicity of a novel dendritic cell (DC)-targeted PEDV S1 protein-based subunit vaccine in weaned piglets in which the PEDV antigen was targeted to DCs through a porcine Langerin-specific antibody. In this study, we evaluated the protective efficacy of this DC-targeting vaccine by immunizing sows at 5 and 2 weeks prior to farrowing and by challenging the 5-day-old piglets with PEDV. The results showed that immunization of sow with DC-targeted PEDV vaccine did not eliminate faecal virus shedding in piglets but significantly reduced faecal viral RNA levels in the early days after virus challenge. The vaccine also reduced the amount of PEDV antigen in intestinal tissues presented with intestinal villi regrowth. However, the DC-targeted vaccine neither mitigated PEDV clinical signs nor affected viral RNA loads in intestinal tissues of piglets. In the vaccinated sow, DC-targeted PEDV vaccine enhanced T helper 1-like cluster of differentiation (CD)4 T cell responses and induced IgG but not IgA-specific immune responses. The suckling piglets in the DC-targeted vaccine group showed increased gross pathological lesions in the small intestine. Results in this study provide insights into the effects of sow cellular immune responses to PEDV infection in suckling piglets.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria , Animales , Animales Lactantes , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Células Dendríticas/virología , Femenino , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología , Esparcimiento de Virus
4.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724761

RESUMEN

Hepatitis E virus (HEV), a single-stranded positive-sense RNA virus, generally causes self-limiting acute viral hepatitis, although chronic HEV infection has recently become a significant clinical problem in immunocompromised individuals, especially in solid-organ transplant recipients. Innate immunity, via the type I interferon (IFN) response, plays an important role during the initial stages of a viral infection. IFN-stimulated gene 15 (ISG15), an IFN-induced ubiquitin-like protein, is known to have an immunomodulatory role and can have a direct antiviral effect on a wide spectrum of virus families. In the present study, we investigated the antiviral effect as well as the potential immunomodulatory role of ISG15 during HEV replication. The results revealed that HEV induced high levels of ISG15 production both in vitro (Huh7-S10-3 liver cells) and in vivo (liver tissues from HEV-infected pigs); however, ISG15 is not required for virus replication. We also demonstrated that ISG15 silencing potentiates enhanced type I IFN-mediated signaling, resulting in an increase in the type I IFN-mediated antiviral effect during HEV replication. This observed enhanced type I IFN signaling correlated with an increase in IFN-stimulated gene expression levels during HEV replication. Furthermore, we showed that PKR and OAS1 played important roles in the ISG15-mediated type I IFN sensitivity of HEV. Taken together, the results from this study suggest that ISG15 plays an important immunomodulatory role and regulates HEV sensitivity to exogenous type I IFN.IMPORTANCE Hepatitis E virus (HEV) infection typically causes self-limiting acute viral hepatitis. However, chronic HEV infection has recently become a significant clinical problem in immunocompromised patients. Pegylated interferon (IFN) has been used to treat chronic HEV infection in solid-organ transplant patients with some success. However, the mechanism behind the type I IFN-mediated antiviral effect against HEV remains unclear. This report demonstrates that ISG15 induced by HEV replication in Huh7-S10-3 human liver cells plays an immunomodulatory role by negatively regulating type I IFN signaling and, thus, HEV sensitivity to type I IFN. Our results also show that PKR and OAS1 play important roles in the ISG15-mediated type I IFN sensitivity of HEV.


Asunto(s)
Citocinas/inmunología , Virus de la Hepatitis E/crecimiento & desarrollo , Hepatitis E/inmunología , Interferón-alfa/inmunología , Ubiquitinas/inmunología , Replicación Viral/inmunología , 2',5'-Oligoadenilato Sintetasa/metabolismo , Animales , Línea Celular Tumoral , Citocinas/genética , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/inmunología , Porcinos , Ubiquitinas/genética , Replicación Viral/genética , eIF-2 Quinasa/metabolismo
5.
J Pain Res ; 16: 2909-2918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649625

RESUMEN

Purpose: Prospective evaluation of radiographic fusion outcomes in patients receiving instrumented posterior arthrodesis of the lumbar spine using a minimally invasive interspinous fixation device. Patients and Methods: All patients (n = 110) from a single US physician's practice who received instrumented posterior arthrodesis of the lumbar spine with a minimally invasive interspinous fixation device in the calendar year 2020 were invited to return for a follow-up CT scan to radiographically assess fusion. Forty-three patients, representing 69 total treated levels, consented to participate and received a lumbar CT scan at a mean of 459 days post-surgery (177 to 652). The interspinous/interlaminar fusion was assessed by 3 independent radiologists using a novel grading scale. Spinous process fractures were also assessed. Results: 92.8% of the assessed levels were considered fused. There were no intraoperative spinous process fractures. There were 4 spinous process fractures (5.8%) identified on CT imaging, all of which were asymptomatic and healed without subsequent intervention. There were no instances of device mechanical failure or device-related reoperation. Conclusion: Instrumented posterior arthrodesis of the lumbar spine using a minimally invasive interspinous fixation device provides clinically meaningful fusion rates with no reoperations and a low risk of spinous process fracture or other device-related complications.

6.
Viral Immunol ; 31(4): 333-337, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29489438

RESUMEN

CD137 is a costimulatory molecule transiently expressed on activated T cells after mitogen or antigen stimulation that can be exploited for isolating antigen-specific T cells as reported in mouse models. By utilizing an antiporcine CD137 monoclonal antibody (mAb, clone 3B9) developed in our laboratory, we isolated virus-specific CD8ß T cells from peripheral blood of pigs experimentally infected with different porcine reproductive and respiratory syndrome virus (PRRSV) strains. Similar to mouse, porcine CD8ß T cells also express CD137 transiently upon Concavalin A stimulation while the unstimulated cells did not. Most frequently, virus-specific CD8ß T cells were isolated at low levels from peripheral blood of pigs experimentally infected with PRRSV strains VR2385, NADC20, and MN184B at 49 and 63 days postinfection. The results suggest that porcine CD137-specific mAb is a useful tool for isolating virus-specific CD8 T cells from peripheral blood and tissues of pigs after in vitro stimulation with viral antigen.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Células HEK293 , Humanos , Síndrome Respiratorio y de la Reproducción Porcina/sangre , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Viremia/inmunología , Viremia/veterinaria , Viremia/virología
7.
Vet Microbiol ; 224: 23-30, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30269786

RESUMEN

A novel U.S. strain of mammalian orthoreovirus type 3 (MRV3) isolated from diarrheic pigs in 2015 was reportedly highly pathogenic in pigs. In this study, we first developed an inactivated MRV3 vaccine and determined its protective efficacy against MRV3 infection in conventional neonatal piglets. A pathogenicity study was also conducted in gnotobiotic pigs to further assess the pathogenicity of MRV3. To evaluate if piglets could be protected against MRV3 infection after immunization of pregnant sows with an inactivated MRV3 vaccine, pregnant sows were vaccinated with 2 or 3 doses of the vaccine or with PBS buffer. Four-day-old piglets born to vaccinated and unvaccinated sows were subsequently challenged with MRV3. The results showed that piglets born from vaccinated sows had lower levels of fecal viral RNA shedding at 1, 3, and 4 days post-challenge, suggesting that the inactivated MRV3 vaccine can reduce MRV3 replication. Surprisingly, although the conventional piglets were infected, they did not develop severe enteric disease as reported previously. Therefore, in an effort to further definitively assess the pathogenicity of MRV3, we experimentally infected gnotobiotic pigs, a more sensitive model for pathogenicity study, with the wild-type MRV3 virus. The infected gnotobiotic piglets all survived and exhibited only very mild diarrhea in some pigs. Taken together, the results indicate that the novel strain of MRV3 recently isolated in the United States infected but caused only very mild diarrhea in pigs, and that maternal immunity acquired from sows vaccinated with an inactivated vaccine can reduce MRV3 replication in neonatal pigs.


Asunto(s)
Orthoreovirus Mamífero 3/patogenicidad , Infecciones por Reoviridae/veterinaria , Enfermedades de los Porcinos/prevención & control , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/inmunología , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Femenino , Vida Libre de Gérmenes , Inmunidad Materno-Adquirida/inmunología , Inmunización/veterinaria , Embarazo , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/prevención & control , Porcinos , Enfermedades de los Porcinos/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas Virales/administración & dosificación , Virulencia
8.
Vaccine ; 35(18): 2427-2434, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28343773

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of arguably the most economically important global swine disease. The extensive genetic variation of PRRSV strains is a major obstacle for heterologous protection of current vaccines. Previously, we constructed a panel of chimeric viruses containing only the ectodomain sequences of DNA-shuffled structural genes of different PRRSV strains in the backbone of a commercial vaccine, and found that one chimeric virus had an improved cross-protection efficacy. In this present study, to further enhance the cross-protective efficacy against heterologous strains, we constructed a novel chimeric virus VR2385-S3456 containing the full-length sequences of shuffled structural genes (ORFs 3-6) from 6 heterologous PRRSV strains in the backbone of PRRSV strain VR2385. We showed that the chimeric virus VR2385-S3456 induced a high level of neutralizing antibodies in pigs against two heterologous strains. A subsequent vaccination and challenge study in 48 pigs revealed that the chimeric virus VR2385-S3456 conferred an enhanced cross-protection when challenged with heterologous virus strain NADC20 or a contemporary heterologous strain RFLP 1-7-4. The results suggest that the chimera VR2385-S3456 may be a good PRRSV vaccine candidate for further development to confer heterologous protection.


Asunto(s)
Protección Cruzada , Inmunidad Heteróloga , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , Barajamiento de ADN , Genes Virales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación , Vacunas Virales/genética , Vacunas Virales/aislamiento & purificación
9.
Virus Res ; 227: 212-219, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27784629

RESUMEN

Porcine epidemic diarrhea virus (PEDV) first emerged in the United States in 2013 causing high mortality and morbidity in neonatal piglets with immense economic losses to the swine industry. PEDV is an alpha-coronavirus replicating primarily in porcine intestinal cells. PEDV vaccines are available in Asia and Europe, and conditionally-licensed vaccines recently became available in the United States but the efficacies of these vaccines in eliminating PEDV from swine populations are questionable. In this study, the immunogenicity of a subunit vaccine based on the spike protein of PEDV, which was directly targeted to porcine dendritic cells (DCs) expressing Langerin, was assessed. The PEDV S antigen was delivered to the dendritic cells through a single-chain antibody specific to Langerin and the targeted cells were stimulated with cholera toxin adjuvant. This approach, known as "dendritic cell targeting," greatly improved PEDV S antigen-specific T cell interferon-γ responses in the CD4posCD8pos T cell compartment in pigs as early as 7days upon transdermal administration. When the vaccine protein was targeted to Langerinpos DCs systemically through intramuscular vaccination, it induced higher serum IgG and IgA responses in pigs, though these responses require a booster dose, and the magnitude of T cell responses were lower as compared to transdermal vaccination. We conclude that PEDV spike protein domains targeting Langerin-expressing dendritic cells significantly increased CD4 T cell immune responses in pigs. The results indicate that the immunogenicity of protein subunit vaccines can be greatly enhanced by direct targeting of the vaccine antigens to desirable dendritic cell subsets in pigs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Virus de la Diarrea Epidémica Porcina/inmunología , Dominios Proteicos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos Virales/inmunología , Células CHO , Chlorocebus aethiops , Infecciones por Coronavirus/veterinaria , Cricetulus , Inmunización , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Anticuerpos de Cadena Única/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas de Subunidad/inmunología , Células Vero , Vacunas Virales/inmunología
10.
Vaccine ; 32(50): 6768-75, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25446829

RESUMEN

Immunogenicity of protein subunit vaccines may be dramatically improved by targeting them through antibodies specific to c-type lectin receptors (CLRs) of dendritic cells in mice, cattle, and primates. This novel vaccine development approach has not yet been explored in pigs or other species largely due to the lack of key reagents. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus (PRRSV) antigen was targeted efficiently to dendritic cells through antibodies specific to a porcine CLR molecule DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) in pigs. A recombinant PRRSV antigen (shGP45M) was constructed by fusing secretory-competent subunits of GP4, GP5 and M proteins derived from genetically-shuffled strains of PRRSV. In vaccinated pigs, when the PRRSV shGP45M antigen was delivered through a recombinant mouse-porcine chimeric antibody specific to the porcine DC-SIGN (pDC-SIGN) neck domain, porcine dendritic cells rapidly internalized them in vitro and induced higher numbers of antigen-specific interferon-γ producing CD4T cells compared to the pigs receiving non-targeted PRRSV shGP45M antigen. The pDC-SIGN targeting of recombinant antigen subunits may serve as an alternative or complementary strategy to existing vaccines to improve protective immunity against PRRSV by inducing efficient T cell responses.


Asunto(s)
Antígenos Virales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Moléculas de Adhesión Celular/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Receptores de Superficie Celular/metabolismo , Vacunas Virales/inmunología , Animales , Antígenos Virales/genética , Moléculas de Adhesión Celular/genética , Interferón gamma/metabolismo , Lectinas Tipo C/genética , Transporte de Proteínas , Receptores de Superficie Celular/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Porcinos , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
11.
Virology ; 381(1): 6-10, 2008 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-18829061

RESUMEN

Human papillomaviruses (HPVs) replicate in mitotically active basal keratinocytes. Two virally encoded proteins, E1, a helicase, and E2, a transcription factor, are important players in replication and maintenance of HPV episomes. We previously showed that HPV16 could replicate stably in Saccharomyces cerevisiae [Angeletti, P.C., Kim, K., Fernandes, F.J., and Lambert, P.F. (2002)] and we identified cis-elements that mediate replication and maintenance [J. Virol. 76(7), 3350-3358.; Kim, K., Angeletti, P.C., Hassebroek, E.C., and Lambert, P.F. (2005)]. Here, we demonstrate that although multiple HPV genomes replicate stably in yeast, they do so with differing long-term efficiency; HPV6-Ura3 is replicated at the highest copy number, followed by HPV31-Ura3 and HPV16-Ura3 respectively, HPV11-Ura3 and HPV18-Ura3 were unable replicate without the presence of E2 expression and BPV-1-Ura3 was unable to replicate, with or without the presence of E2. These studies suggest genotype-specific differences in HPV replication and maintenance.


Asunto(s)
Papillomaviridae/fisiología , Saccharomyces cerevisiae/virología , Replicación Viral , Proteínas Fúngicas/genética , Papillomaviridae/genética , Plásmidos , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda