Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
FASEB J ; 37(7): e23028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37310356

RESUMEN

Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.


Asunto(s)
Músculo Liso Vascular , Animales , Ratones , Acetilcolina/farmacología , Aniones , Proteínas de la Membrana/genética , Ratones Noqueados , Fosfatasa de Miosina de Cadena Ligera , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología
2.
J Membr Biol ; 256(2): 125-135, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322172

RESUMEN

Chloride channel-3 (ClC-3) Cl-/H+ antiporters and leucine-rich repeat-containing 8 (LRRC8) family anion channels have both been associated with volume-regulated anion currents (VRACs). VRACs are often altered in ClC-3 null cells but are absent in LRRC8A null cells. To explore the relationship between ClC-3, LRRC8A, and VRAC we localized tagged proteins in human epithelial kidney (HEK293) cells using multimodal microscopy. Expression of ClC-3-GFP induced large multivesicular bodies (MVBs) with ClC-3 in the delimiting membrane. LRRC8A-RFP localized to the plasma membrane and to small cytoplasmic vesicles. Co-expression demonstrated co-localization in small, highly mobile cytoplasmic vesicles that associated with the early endosomal marker Rab5A. However, most of the small LRRC8A-positive vesicles were constrained within large MVBs with abundant ClC-3 in the delimiting membrane. Dominant negative (S34A) Rab5A prevented ClC-3 overexpression from creating enlarged MVBs, while constitutively active (Q79L) Rab5A enhanced this phenotype. Thus, ClC-3 and LRRC8A are endocytosed together but independently sorted in Rab5A MVBs. Subsequently, LRRC8A-labeled vesicles were sorted to MVBs labeled by Rab27A and B exosomal compartment markers, but not to Rab11 recycling endosomes. VRAC currents were significantly larger in ClC-3 null HEK293 cells. This work demonstrates dependence of LRRC8A trafficking on ClC-3 which may explain the association between ClC-3 and VRACs.


Asunto(s)
Canales de Cloruro , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Leucina , Células HEK293 , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Aniones/metabolismo
3.
J Physiol ; 599(12): 3013-3036, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33932953

RESUMEN

KEY POINTS: LRRC8A-containing anion channels associate with NADPH oxidase 1 (Nox1) and regulate superoxide production and tumour necrosis factor-α (TNFα) signalling. Here we show that LRRC8C and 8D also co-immunoprecipitate with Nox1 in vascular smooth muscle cells. LRRC8C knockdown inhibited TNFα-induced O2•- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation while LRRC8D knockdown enhanced NF-κB activation. Significant changes in LRRC8 isoform expression in human atherosclerosis and psoriasis suggest compensation for increased inflammation. The oxidant chloramine-T (ChlorT, 1 mM) weakly (∼25%) inhibited LRRC8C currents but potently (∼80%) inhibited LRRC8D currents. Substitution of the extracellular loop (EL1, EL2) domains of 8D into 8C conferred significantly stronger (69%) ChlorT-dependent inhibition. ChlorT exposure impaired subsequent current block by DCPIB, which occurs through interaction with EL1, further implicating external oxidation sites. LRRC8A/C channels most effectively sustain Nox1 activity at the plasma membrane. This may result from their ability to remain active in an oxidized microenvironment. ABSTRACT: Tumour necrosis factor-α (TNFα) activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs), producing superoxide (O2•- ) required for subsequent signalling. LRRC8 family proteins A-E comprise volume-regulated anion channels (VRACs). The required subunit LRRC8A physically associates with Nox1, and VRAC activity is required for Nox activity and the inflammatory response to TNFα. VRAC currents are modulated by oxidants, suggesting that channel oxidant sensitivity and proximity to Nox1 may play a physiologically relevant role. In VSMCs, LRRC8C knockdown (siRNA) recapitulated the effects of siLRRC8A, inhibiting TNFα-induced extracellular and endosomal O2•- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation. In contrast, siLRRC8D potentiated NF-κB activation. Nox1 co-immunoprecipitated with 8C and 8D, and colocalized with 8D at the plasma membrane and in vesicles. We compared VRAC currents mediated by homomeric and heteromeric LRRC8C and LRRC8D channels expressed in HEK293 cells. The oxidant chloramine T (ChlorT, 1 mM) weakly inhibited 8C, but potently inhibited 8D currents. ChlorT exposure also impaired subsequent current block by the VRAC blocker DCPIB, implicating external sites of oxidation. Substitution of the 8D extracellular loop domains (EL1, EL2) into 8C conferred significantly stronger ChlorT-mediated inhibition of 8C currents. Our results suggest that LRRC8A/C channel activity can be effectively maintained in the oxidized microenvironment expected to result from Nox1 activation at the plasma membrane. Increased ratios of 8D:8C expression may potentially depress inflammatory responses to TNFα. LRRC8A/C channel downregulation represents a novel strategy to reduce TNFα-induced inflammation.


Asunto(s)
Proteínas de la Membrana , NADPH Oxidasa 1 , Oxidantes , Superóxidos , Aniones , Células HEK293 , Humanos
4.
J Physiol ; 596(17): 4091-4119, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29917234

RESUMEN

KEY POINTS: The ClC-3 2Cl- /1H+ exchanger modulates endosome pH and Cl- concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, ISS ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/ISS . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Gluext ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling. ABSTRACT: We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (ISS ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/ISS ratio, but an indistinguishable Cl- /H+ coupling ratio. External SCN- reduced H+ transport rate and uncoupled anion/H+ exchange by 80-90%. Removal of the external gating glutamate ("Gluext ") (E224A mutation) reduced Q and abolished H+ transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H+ transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/ISS ratio by 50% and enhanced H+ transport. External protons (pH 5.0) inhibited ISS and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl- /H+ coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Gluext adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased ISS and impaired coupling, without slowing H+ transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/ISS must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H+ coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.


Asunto(s)
Aniones/metabolismo , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Ácido Glutámico/metabolismo , Protones , Tirosina/metabolismo , Canales de Cloruro/genética , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Transporte Iónico , Cinética , Mutación , Tirosina/genética
5.
Development ; 137(20): 3523-33, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20876658

RESUMEN

Bidirectional trans-synaptic signals induce synaptogenesis and regulate subsequent synaptic maturation. Presynaptically secreted Mind the gap (Mtg) molds the synaptic cleft extracellular matrix, leading us to hypothesize that Mtg functions to generate the intercellular environment required for efficient signaling. We show in Drosophila that secreted Jelly belly (Jeb) and its receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) are localized to developing synapses. Jeb localizes to punctate aggregates in central synaptic neuropil and neuromuscular junction (NMJ) presynaptic terminals. Secreted Jeb and Mtg accumulate and colocalize extracellularly in surrounding synaptic boutons. Alk concentrates in postsynaptic domains, consistent with an anterograde, trans-synaptic Jeb-Alk signaling pathway at developing synapses. Jeb synaptic expression is increased in Alk mutants, consistent with a requirement for Alk receptor function in Jeb uptake. In mtg null mutants, Alk NMJ synaptic levels are reduced and Jeb expression is dramatically increased. NMJ synapse morphology and molecular assembly appear largely normal in jeb and Alk mutants, but larvae exhibit greatly reduced movement, suggesting impaired functional synaptic development. jeb mutant movement is significantly rescued by neuronal Jeb expression. jeb and Alk mutants display normal NMJ postsynaptic responses, but a near loss of patterned, activity-dependent NMJ transmission driven by central excitatory output. We conclude that Jeb-Alk expression and anterograde trans-synaptic signaling are modulated by Mtg and play a key role in establishing functional synaptic connectivity in the developing motor circuit.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Análisis de Varianza , Quinasa de Linfoma Anaplásico , Animales , Electrofisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Inmunohistoquímica , Unión Neuromuscular/fisiología , Proteínas Tirosina Quinasas Receptoras , Sinapsis/fisiología
6.
bioRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945623

RESUMEN

Background: In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ). Methods and Results: Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Conclusions: Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.

7.
J Neurosci ; 25(12): 3199-208, 2005 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-15788777

RESUMEN

A Drosophila forward genetic screen for mutants with defective synaptic development identified bad reception (brec). Homozygous brec mutants are embryonic lethal, paralyzed, and show no detectable synaptic transmission at the glutamatergic neuromuscular junction (NMJ). Genetic mapping, complementation tests, and genomic sequencing show that brec mutations disrupt a previously uncharacterized ionotropic glutamate receptor subunit, named here "GluRIID." GluRIID is expressed in the postsynaptic domain of the NMJ, as well as widely throughout the synaptic neuropil of the CNS. In the NMJ of null brec mutants, all known glutamate receptor subunits are undetectable by immunocytochemistry, and all functional glutamate receptors are eliminated. Thus, we conclude that GluRIID is essential for the assembly and/or stabilization of glutamate receptors in the NMJ. In null brec mutant embryos, the frequency of periodic excitatory currents in motor neurons is significantly reduced, demonstrating that CNS motor pattern activity is regulated by GluRIID. Although synaptic development and molecular differentiation appear otherwise unperturbed in null mutants, viable hypomorphic brec mutants display dramatically undergrown NMJs by the end of larval development, suggesting that GluRIID-dependent central pattern activity regulates peripheral synaptic growth. These studies reveal GluRIID as a newly identified glutamate receptor subunit that is essential for glutamate receptor assembly/stabilization in the peripheral NMJ and required for properly patterned motor output in the CNS.


Asunto(s)
Proteínas de Drosophila/fisiología , Unión Neuromuscular/fisiología , Neurópilo/metabolismo , Receptores de Glutamato/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Estimulación Eléctrica/métodos , Embrión no Mamífero , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Microscopía Confocal/métodos , Biología Molecular/métodos , Técnicas de Placa-Clamp/métodos , Subunidades de Proteína/deficiencia , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Glutamato/deficiencia , Proteínas Supresoras de Tumor/metabolismo , Proteína Letal Asociada a bcl/deficiencia
8.
Free Radic Biol Med ; 101: 413-423, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27838438

RESUMEN

Leucine Rich Repeat Containing 8A (LRRC8A) is a required component of volume-regulated anion channels (VRACs). In vascular smooth muscle cells, tumor necrosis factor-α (TNFα) activates VRAC via type 1 TNFα receptors (TNFR1), and this requires superoxide (O2•-) production by NADPH oxidase 1 (Nox1). VRAC inhibitors suppress the inflammatory response to TNFα by an unknown mechanism. We hypothesized that LRRC8A directly supports Nox1 activity, providing a link between VRAC current and inflammatory signaling. VRAC inhibition by 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) impaired NF-κB activation by TNFα. LRRC8A siRNA reduced the magnitude of VRAC and inhibited TNFα-induced NF-κB activation, iNOS and VCAM expression, and proliferation of VSMCs. Signaling steps disrupted by both siLRRC8A and DCPIB included; extracellular O2•- production by Nox1, c-Jun N-terminal kinase (JNK) phosphorylation and endocytosis of TNFR1. Extracellular superoxide dismutase, but not catalase, selectively inhibited TNFR1 endocytosis and JNK phosphorylation. Thus, O2•- is the critical extracellular oxidant for TNFR signal transduction. Reducing JNK expression (siJNK) increased extracellular O2•- suggesting that JNK provides important negative feedback regulation to Nox1 at the plasma membrane. LRRC8A co-localized by immunostaining, and co-immunoprecipitated with, both Nox1 and its p22phox subunit. LRRC8A is a component of the Nox1 signaling complex. It is required for extracellular O2•- production, which is in turn essential for TNFR1 endocytosis. These data are the first to provide a molecular mechanism for the potent anti-proliferative and anti-inflammatory effects of VRAC inhibition.


Asunto(s)
Proteínas de la Membrana/genética , Miocitos del Músculo Liso/efectos de los fármacos , NADPH Oxidasa 1/genética , Superóxidos/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Línea Celular , Ciclopentanos/farmacología , Endocitosis/efectos de los fármacos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Indanos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 1/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Superóxido Dismutasa/farmacología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
9.
J Neurosci ; 24(36): 7789-803, 2004 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-15356190

RESUMEN

A screen for Drosophila synaptic dysfunction mutants identified slug-a-bed (slab). The slab gene encodes ceramidase, a central enzyme in sphingolipid metabolism and regulation. Sphingolipids are major constituents of lipid rafts, membrane domains with roles in vesicle trafficking, and signaling pathways. Null slab mutants arrest as fully developed embryos with severely reduced movement. The SLAB protein is widely expressed in different tissues but enriched in neurons at all stages of development. Targeted neuronal expression of slab rescues mutant lethality, demonstrating the essential neuronal function of the protein. C(5)-ceramide applied to living preparations is rapidly accumulated at neuromuscular junction (NMJ) synapses dependent on the SLAB expression level, indicating that synaptic sphingolipid trafficking and distribution is regulated by SLAB function. Evoked synaptic currents at slab mutant NMJs are reduced by 50-70%, whereas postsynaptic glutamate-gated currents are normal, demonstrating a specific presynaptic impairment. Hypertonic saline-evoked synaptic vesicle fusion is similarly impaired by 50-70%, demonstrating a loss of readily releasable vesicles. In addition, FM1-43 dye uptake is reduced in slab mutant presynaptic terminals, indicating a smaller cycling vesicle pool. Ultrastructural analyses of mutants reveal a normal vesicle distribution clustered and docked at active zones, but fewer vesicles in reserve regions, and a twofold to threefold increased incidence of vesicles linked together and tethered at the plasma membrane. These results indicate that SLAB ceramidase function controls presynaptic terminal sphingolipid composition to regulate vesicle fusion and trafficking, and thus the strength and reliability of synaptic transmission.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Exocitosis/fisiología , Proteínas del Tejido Nervioso/fisiología , Esfingolípidos/metabolismo , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Apoptosis , Membrana Celular/ultraestructura , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Colorantes Fluorescentes/farmacocinética , Larva/fisiología , Locomoción/fisiología , Fusión de Membrana , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/química , Unión Neuromuscular/ultraestructura , Técnicas de Placa-Clamp , Compuestos de Piridinio/farmacocinética , Compuestos de Amonio Cuaternario/farmacocinética , Receptores Presinapticos/fisiología , Eliminación de Secuencia , Vesículas Sinápticas/ultraestructura
10.
Dev Neurobiol ; 73(3): 189-208, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22949158

RESUMEN

In Drosophila, the secreted signaling molecule Jelly Belly (Jeb) activates anaplastic lymphoma kinase (Alk), a receptor tyrosine kinase, in multiple developmental and adult contexts. We have shown previously that Jeb and Alk are highly enriched at Drosophila synapses within the CNS neuropil and neuromuscular junction (NMJ) and postulated a conserved intercellular signaling function. At the embryonic and larval NMJ, Jeb is localized in the motor neuron presynaptic terminal whereas Alk is concentrated in the muscle postsynaptic domain surrounding boutons, consistent with anterograde trans-synaptic signaling. Here, we show that neurotransmission is regulated by Jeb secretion by functional inhibition of Jeb-Alk signaling. Jeb is a novel negative regulator of neuromuscular transmission. Reduction or inhibition of Alk function results in enhanced synaptic transmission. Activation of Alk conversely inhibits synaptic transmission. Restoration of wild-type postsynaptic Alk expression in Alk partial loss-of-function mutants rescues NMJ transmission phenotypes and confirms that postsynaptic Alk regulates NMJ transmission. The effects of impaired Alk signaling on neurotransmission are observed in the absence of associated changes in NMJ structure. Complete removal of Jeb in motor neurons, however, disrupts both presynaptic bouton architecture and postsynaptic differentiation. Nonphysiologic activation of Alk signaling also negatively regulates NMJ growth. Activation of Jeb-Alk signaling triggers the Ras-MAP kinase cascade in both pre- and postsynaptic compartments. These novel roles for Jeb-Alk signaling in the modulation of synaptic function and structure have potential implications for recently reported Alk functions in human addiction, retention of spatial memory, cognitive dysfunction in neurofibromatosis, and pathogenesis of amyotrophic lateral sclerosis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Quinasa de Linfoma Anaplásico , Animales , Electrofisiología , Inmunohistoquímica , Transducción de Señal/fisiología
11.
Dev Neurobiol ; 72(8): 1161-79, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22234957

RESUMEN

Mind-the-Gap (MTG) is required for neuronal induction of Drosophila neuromuscular junction (NMJ) postsynaptic domains, including glutamate receptor (GluR) localization. We have previously hypothesized that MTG is secreted from the presynaptic terminal to reside in the synaptic cleft, where it binds glycans to organize the heavily glycosylated, extracellular synaptomatrix required for transsynaptic signaling between neuron and muscle. In this study, we test this hypothesis with MTG structure-function analyses of predicted signal peptide (SP) and carbohydrate-binding domain (CBD), by introducing deletion and point-mutant transgenic constructs into mtg null mutants. We show that the SP is required for MTG secretion and localization to synapses in vivo. We further show that the CBD is required to restrict MTG diffusion in the extracellular synaptomatrix and for postembryonic viability. However, CBD mutation results in elevation of postsynaptic GluR localization during synaptogenesis, not the mtg null mutant phenotype of reduced GluRs as predicted by our hypothesis, suggesting that proper synaptic localization of MTG limits GluR recruitment. In further testing CBD requirements, we show that MTG binds N-acetylglucosamine (GlcNAc) in a Ca(2+)-dependent manner, and thereby binds HRP-epitope glycans, but that these carbohydrate interactions do not require the CBD. We conclude that the MTG lectin has both positive and negative binding interactions with glycans in the extracellular synaptic domain, which both facilitate and limit GluR localization during NMJ embryonic synaptogenesis.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Lectinas/química , Lectinas/fisiología , Unión Neuromuscular/fisiología , Sinapsis/química , Sinapsis/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Drosophila , Uniones Comunicantes/química , Uniones Comunicantes/fisiología , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Unión Neuromuscular/química , Unión Neuromuscular/embriología , Relación Estructura-Actividad
12.
Dev Dyn ; 238(3): 554-71, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19235718

RESUMEN

Mind-the-Gap (MTG) is required during synaptogenesis of the Drosophila glutamatergic neuromuscular junction (NMJ) to organize the postsynaptic domain. Here, we generate MTG::GFP transgenic animals to demonstrate MTG is synaptically targeted, secreted, and localized to punctate domains in the synaptic extracellular matrix (ECM). Drosophila NMJs form specialized ECM carbohydrate domains, with carbohydrate moieties and integrin ECM receptors occupying overlapping territories. Presynaptically secreted MTG recruits and reorganizes secreted carbohydrates, and acts to recruit synaptic integrins and ECM glycans. Transgenic MTG::GFP expression rescues hatching, movement, and synaptogenic defects in embryonic-lethal mtg null mutants. Targeted neuronal MTG expression rescues mutant synaptogenesis defects, and increases rescue of adult viability, supporting an essential neuronal function. These results indicate that presynaptically secreted MTG regulates the ECM-integrin interface, and drives an inductive mechanism for the functional differentiation of the postsynaptic domain of glutamatergic synapses. We suggest that MTG pioneers a novel protein family involved in ECM-dependent synaptic differentiation.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Animales , Animales Modificados Genéticamente , Metabolismo de los Hidratos de Carbono , Proteínas Portadoras/genética , ADN Complementario/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación/genética
13.
Genes Dev ; 21(20): 2607-28, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17901219

RESUMEN

Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix-dPak-Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development.


Asunto(s)
Drosophila/embriología , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mapeo Cromosómico , Cartilla de ADN/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Genes de Insecto , Glicosaminoglicanos/metabolismo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Mutación , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Interferencia de ARN , Receptores de Glutamato/metabolismo , Homología de Secuencia de Aminoácido , Sinapsis/ultraestructura
14.
Nat Rev Neurosci ; 6(2): 139-50, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15685219

RESUMEN

Membrane vesicle cycling is orchestrated through the combined actions of proteins and lipids. At neuronal synapses, this orchestration must meet the stringent demands of speed, fidelity and sustainability of the synaptic vesicle cycle that mediates neurotransmission. Historically, the lion's share of the attention has been focused on the proteins that are involved in this cycle; but, in recent years, it has become clear that the previously unheralded plasma membrane and vesicle lipids are also key regulators of this cycle. This article reviews recent insights into the roles of lipid-modifying enzymes and lipids in the acute modulation of neurotransmission.


Asunto(s)
Lípidos/fisiología , Sinapsis/metabolismo , Vesículas Sinápticas/fisiología , Animales , Endocitosis/fisiología , Enzimas/metabolismo , Exocitosis/fisiología , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/fisiología , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura
15.
J Neurophysiol ; 88(2): 847-60, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12163536

RESUMEN

We report functional neuronal and synaptic transmission properties in Drosophila CNS neurons. Whole cell current- and voltage-clamp recordings were made from dorsally positioned neurons in the larval ventral nerve cord. Comparison of neuronal Green Fluorescent Protein markers and intracellular dye labeling revealed that recorded cells consisted primarily of identified motor neurons. Neurons had resting potentials of -50 to -60 mV and fired repetitive action potentials (APs) in response to depolarizing current injection. Acetylcholine application elicited large excitatory responses and AP bursts that were reversibly blocked by the nicotinic receptor antagonist D-tubocurarine (dtC). GABA and glutamate application elicited similar inhibitory responses that reversed near normal resting potential and were reversibly blocked by the chloride channel blocker picrotoxin. Multiple types of endogenous synaptically driven activity were present in most neurons, including fast spontaneous synaptic events resembling unitary excitatory postsynaptic currents (EPSCs) and sustained excitatory currents and potentials. Sustained forms of endogenous activity ranged in amplitude from smaller subthreshold "intermediate" sustained events to large "rhythmic" events that supported bursts of APs. Electrical stimulation of peripheral nerves or focal stimulation of the neuropil evoked sustained responses and fast EPSCs similar to endogenous events. Endogenous activity and evoked responses required external Ca(2+) and were reversibly blocked by dtC application, indicating that cholinergic synaptic transmission directly underlies observed activity. Synaptic current amplitude and frequency were reduced in shibire conditional dynamin mutants and increased in dunce cAMP phosphodiesterase mutants. These results complement and advance those of recent functional studies in Drosophila embryonic neurons and demonstrate the feasibility of in-depth synaptic transmission and plasticity studies in the Drosophila CNS.


Asunto(s)
Proteínas de Drosophila , Drosophila , Transmisión Sináptica/fisiología , 3',5'-AMP Cíclico Fosfodiesterasas/genética , Acetilcolina/metabolismo , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Sistema Nervioso Central/fisiología , Dinaminas , Estimulación Eléctrica , Electrofisiología , Antagonistas del GABA/farmacología , GTP Fosfohidrolasas/genética , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Mutación , Neuronas/fisiología , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Receptores Nicotínicos/metabolismo , Transmisión Sináptica/efectos de los fármacos , Tubocurarina/farmacología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
16.
J Neurobiol ; 54(1): 254-71, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12486708

RESUMEN

Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.


Asunto(s)
Drosophila melanogaster/genética , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Fibras Colinérgicas , Técnicas de Cultivo , Drosophila melanogaster/embriología , Drosophila melanogaster/fisiología , Electrofisiología , Embrión no Mamífero/citología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda