Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant J ; 113(2): 327-341, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448213

RESUMEN

To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Désirée' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4°C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2 O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response.


Asunto(s)
Frío , Solanum tuberosum , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Metabolismo de los Hidratos de Carbono , Hexosas/metabolismo , Sacarosa/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tubérculos de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Exp Bot ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758594

RESUMEN

Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy (ED), where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of ED by influencing plant hormones and sugar metabolism, which impact the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid (ABA), affecting the symplastic connection of dormant buds. This review explores how chilling affects ED duration and explores the similarity of the chilling response of dormant buds in potato tuber and woody perennials.

3.
J Immunol ; 207(2): 709-719, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34215656

RESUMEN

Tumor-treating fields (TTFields) are a localized, antitumoral therapy using alternating electric fields, which impair cell proliferation. Combining TTFields with tumor immunotherapy constitutes a rational approach; however, it is currently unknown whether TTFields' locoregional effects are compatible with T cell functionality. Healthy donor PBMCs and viably dissociated human glioblastoma samples were cultured under either standard or TTFields conditions. Select pivotal T cell functions were measured by multiparametric flow cytometry. Cytotoxicity was evaluated using a chimeric Ag receptor (CAR)-T-based assay. Glioblastoma patient samples were acquired before and after standard chemoradiation or standard chemoradiation + TTFields treatment and examined by immunohistochemistry and by RNA sequencing. TTFields reduced the viability of proliferating T cells, but had little or no effect on the viability of nonproliferating T cells. The functionality of T cells cultured under TTFields was retained: they exhibited similar IFN-γ secretion, cytotoxic degranulation, and PD1 upregulation as controls with similar polyfunctional patterns. Glioblastoma Ag-specific T cells exhibited unaltered viability and functionality under TTFields. CAR-T cells cultured under TTFields exhibited similar cytotoxicity as controls toward their CAR target. Transcriptomic analysis of patients' glioblastoma samples revealed a significant shift in the TTFields-treated versus the standard-treated samples, from a protumoral to an antitumoral immune signature. Immunohistochemistry of samples before and after TTFields treatment showed no reduction in T cell infiltration. T cells were found to retain key antitumoral functions under TTFields settings. Our data provide a mechanistic insight and a rationale for ongoing and future clinical trials that combine TTFields with immunotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Glioblastoma/inmunología , Glioblastoma/terapia , Linfocitos T/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Terapia Combinada/métodos , Humanos , Inmunoterapia/métodos , Interferón gamma/metabolismo , Linfocitos T/inmunología , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda