Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Alcohol Clin Exp Res ; 43(10): 2167-2178, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31386211

RESUMEN

BACKGROUND: The nociceptin/orphanin FQ opioid peptide (NOP) receptor and its endogenous ligand N/OFQ have been implicated in the regulation of drug and alcohol use disorders (AUD). In particular, evidence demonstrated that NOP receptor activation blocks reinforcing and motivating effects of alcohol across a range of behavioral measures, including alcohol intake, conditioned place preference, and vulnerability to relapse. METHODS: Here, we show the effects of pharmacological activation and inhibition of NOP receptors on binge-like alcohol consumption, as measured by the "drinking in the dark" (DID) model in C57BL/6J mice. RESULTS: We found that 2 potent and selective NOP agonists AT-202 (0, 0.3, 1, 3 mg/kg) and AT-312 (0, 0.3, 1 mg/kg) did not affect binge alcohol drinking at doses that do not affect locomotor activity. AT-202 also failed to alter DID behavior when administered to mice previously exposed to chronic alcohol treatment with an alcohol-containing liquid diet. Conversely, treatment with either the high affinity NOP receptor antagonist SB-612111 (0, 3, 10, 30 mg/kg) or the selective antagonist LY2817412 (0, 3, 10, 30 mg/kg) decreased binge drinking. SB-612111 was effective at all doses examined, and LY2817412 was effective at 30 mg/kg. Consistently, NOP receptor knockout mice consumed less alcohol compared to wild type. SB-612111 reduced DID and increased sucrose consumption at doses that do not appear to affect locomotor activity. However, the high dose of SB-612111 (30 mg/kg) reduced alcohol intake but failed to inhibit preference in a 2-bottle choice DID model that can assess moderate alcohol intake. CONCLUSIONS: The present results suggest that NOP receptor inhibition rather than activation may represent a valuable approach for treatment of AUD characterized by excessive alcohol consumption such as binge drinking.


Asunto(s)
Disuasivos de Alcohol/uso terapéutico , Consumo de Bebidas Alcohólicas/prevención & control , Antagonistas de Narcóticos/uso terapéutico , Receptores Opioides/efectos de los fármacos , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Animales , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/psicología , Depresores del Sistema Nervioso Central/sangre , Cicloheptanos/farmacología , Oscuridad , Relación Dosis-Respuesta a Droga , Etanol/sangre , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Piperidinas/farmacología , Receptores Opioides/agonistas , Receptores Opioides/genética , Receptor de Nociceptina
2.
J Pharmacol Exp Ther ; 356(2): 493-502, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26659925

RESUMEN

Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity.


Asunto(s)
Trastorno por Atracón/metabolismo , Ingestión de Energía/fisiología , Conducta Alimentaria/fisiología , Antagonistas de Narcóticos/farmacología , Receptores Opioides/fisiología , Animales , Trastorno por Atracón/tratamiento farmacológico , Células CHO , Cricetinae , Cricetulus , Ingestión de Energía/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas de Narcóticos/química , Antagonistas de Narcóticos/uso terapéutico , Ratas , Ratas Long-Evans , Resultado del Tratamiento , Receptor de Nociceptina
3.
Alcohol Clin Exp Res ; 40(9): 1935-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27435979

RESUMEN

BACKGROUND: This was a proof-of-concept study to evaluate the efficacy of LY2940094, a nociceptin/orphanin FQ peptide receptor antagonist, in reducing alcohol consumption in actively alcohol-drinking patients with alcohol dependence. METHODS: Eighty-eight patients, 21 to 66 years of age, diagnosed with alcohol dependence, reporting 3 to 6 heavy drinking days per week, were randomized (1:1) to 8 weeks of treatment with once-daily oral placebo (N = 44) or 40 mg/d of LY2940094 (N = 44). The primary efficacy analysis was the change from baseline in number of drinks per day (NDD) utilizing mixed-model repeated measures comparing LY2940094 and placebo in Month 2 of the 8-week double-blind treatment period. The probability that the difference relative to placebo in NDD was ≤0 at endpoint was calculated, and a probability ≥80% was considered to be evidence that LY2940094 was associated with the reduction in NDD. RESULTS: After 8 weeks of treatment, reduction in mean NDD did not differ between LY2940094 versus placebo (-1.4 vs. -1.5, respectively, 44% probability of greater reduction relative to placebo), but there was a greater reduction in the mean percentage of heavy drinking days in a month with LY2940094 versus placebo (-24.5 vs. -15.7%, respectively, 93% probability of a greater reduction relative to placebo), and an increase in the mean percentage of abstinent days in a month compared to placebo (9.1 vs. 1.9%, respectively, 91% probability of a greater increase relative to placebo). Patients who were treated with LY2940094 showed decreased plasma levels of gamma-glutamyl transferase with probabilities ≥98% for greater reduction compared with placebo at Weeks 1, 4, 6, and 8. Treatment-emergent adverse events in ≥5% of patients treated with LY2940094 included insomnia, vomiting, and anxiety. There were no serious adverse events or significant changes in laboratory assessments or vital signs with LY2940094. CONCLUSIONS: Although not reducing the NDD, LY2940094, compared to placebo, did reduce heavy drinking days and increased abstinence days in patients with alcohol dependence.


Asunto(s)
Alcoholismo/diagnóstico , Alcoholismo/tratamiento farmacológico , Antagonistas de Narcóticos/uso terapéutico , Prueba de Estudio Conceptual , Receptores Opioides , Adulto , Alcoholismo/epidemiología , Ansiedad/inducido químicamente , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Antagonistas de Narcóticos/efectos adversos , Proyectos Piloto , Receptores Opioides/fisiología , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente , Resultado del Tratamiento , Estados Unidos/epidemiología , Adulto Joven , Receptor de Nociceptina
4.
Alcohol Clin Exp Res ; 40(5): 945-54, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27084498

RESUMEN

BACKGROUND: The nociceptin/orphanin-FQ (or opioid receptor-like [ORL1]) receptor (NOP) is localized in the mesolimbic reward pathway and has been suggested to play a role in feeding, mood, stress, and addiction. Since its deorphanization in 1995, there has been a clear dichotomy in the literature regarding whether an agonist or antagonist would provide therapeutic benefit. Specifically, the literature reports indicate that NOP receptor antagonists produce efficacy in animal models of hyperphagia and antidepressant-like activity, whereas NOP agonists produce anxiolytic-like effects and dampen reward/addiction behaviors including ethanol consumption. METHODS: We characterize here the potent, orally bioavailable NOP antagonist, LY2940094, in rodent models of ethanol consumption, including ethanol self-administration, progressive ratio operant self-administration, stress-induced reinstatement of ethanol seeking, and in vivo microdialysis in the nucleus accumbens. RESULTS: LY2940094 dose dependently reduced homecage ethanol self-administration in Indiana alcohol-preferring (P) and Marchigian Sardinian alcohol-preferring (msP) rats, without affecting food/water intake or locomotor activity. Reduced ethanol intake in P rats did not show significant tolerance over 4 days of subchronic dosing. LY2940094 attenuated progressive ratio operant responding and break points for ethanol in P rats. Moreover, stress-induced reinstatement of ethanol seeking in msP rats was completely blocked by LY2940094. Furthermore, LY2940094 blocked ethanol-stimulated dopamine release in response to ethanol challenge (1.1 g/kg, intraperitoneally). CONCLUSIONS: Our findings demonstrate for the first time that blockade of NOP receptors attenuates ethanol self-administration and ethanol-motivated behaviors, stress-induced ethanol seeking, and ethanol-induced stimulation of brain reward pathways in lines of rats that exhibit excessive ethanol consumption. Results suggest that LY2940094 may have potential therapeutic utility in treating alcohol addiction.


Asunto(s)
Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/antagonistas & inhibidores , Piranos/farmacología , Receptores Opioides/efectos de los fármacos , Compuestos de Espiro/farmacología , Administración Oral , Animales , Condicionamiento Operante/efectos de los fármacos , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Femenino , Masculino , Microdiálisis , Antagonistas de Narcóticos/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Piranos/administración & dosificación , Ratas , Ratas Endogámicas , Autoadministración , Compuestos de Espiro/administración & dosificación , Receptor de Nociceptina
5.
Int J Neuropsychopharmacol ; 18(2)2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25637376

RESUMEN

BACKGROUND: Selective kappa opioid receptor antagonism is a promising experimental strategy for the treatment of depression. The kappa opioid receptor antagonist, LY2456302, exhibits ~30-fold higher affinity for kappa opioid receptors over mu opioid receptors, which is the next closest identified pharmacology. METHODS: Here, we determined kappa opioid receptor pharmacological selectivity of LY2456302 by assessing mu opioid receptor antagonism using translational pupillometry in rats and humans. RESULTS: In rats, morphine-induced mydriasis was completely blocked by the nonselective opioid receptor antagonist naloxone (3mg/kg, which produced 90% mu opioid receptor occupancy), while 100 and 300 mg/kg LY2456302 (which produced 56% and 87% mu opioid receptor occupancy, respectively) only partially blocked morphine-induced mydriasis. In humans, fentanyl-induced miosis was completely blocked by 50mg naltrexone, and LY2456302 dose-dependently blocked miosis at 25 and 60 mg (minimal-to-no blockade at 4-10mg). CONCLUSIONS: We demonstrate, for the first time, the use of translational pupillometry in the context of receptor occupancy to identify a clinical dose of LY2456302 achieving maximal kappa opioid receptor occupancy without evidence of significant mu receptor antagonism.


Asunto(s)
Benzamidas/farmacología , Antagonistas de Narcóticos/farmacología , Pupila/efectos de los fármacos , Pirrolidinas/farmacología , Receptores Opioides kappa/antagonistas & inhibidores , Adolescente , Adulto , Animales , Benzamidas/sangre , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Fentanilo/farmacología , Humanos , Masculino , Persona de Mediana Edad , Miosis/inducido químicamente , Miosis/tratamiento farmacológico , Morfina/farmacología , Midriasis/inducido químicamente , Midriasis/tratamiento farmacológico , Naltrexona/farmacología , Antagonistas de Narcóticos/sangre , Narcóticos/farmacología , Pupila/fisiología , Pirrolidinas/sangre , Ratas Sprague-Dawley , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Adulto Joven
6.
Mol Pharmacol ; 80(5): 920-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21832171

RESUMEN

The κ-opioid receptor is a widely expressed G-protein-coupled receptor that has been implicated in biological responses to pain, stress, anxiety, and depression, and its potential as a therapeutic target in these syndromes is becoming increasingly apparent. However, the prototypical selective κ-opioid antagonists have very long durations of action that have been attributed to c-Jun N-terminal kinase (JNK) 1 activation in vivo. To test generality of this proposed noncompetitive mechanism, we used C57BL/6 wild type mice to determine the durations of antagonist action of novel κ-opioid receptor ligands and examined their efficacies for JNK1 activation compared with conventional competitive antagonists. Of the 12 compounds tested, 5 had long durations of action that positively correlated with JNK activation: RTI-5989-97 [(3S)-7-hydroxy-N-[(1S)-1-[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-(2-methylpropyl]-2-methyl-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide], RTI-5989-194 [(3R)-7-hydroxy-N-[(1S)-1-[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-(2-methylbutyl]-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide], RTI-5989-241 [(3R)-7-hydroxy-N-[(1S)-1-{[(3R,4R)-4-(3-methoxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxamide)], nor-binaltorphimine (nor-BNI); and (3R)-7-hydroxy-N-((1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide (JDTic). Seven had short durations of action and did not increase phospho-JNK-ir: RTI-5989-212[(3R)-N-[(1S)-1-[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-(2-methylpropyl]-7-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxamide], RTI-5989-240 [(3R)-7-hydroxy-N-[(1S)-1-[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl]methyl}-(2-methylpropyl]-3-methyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide], JSPA0658 [(S)-3-fluoro-4-(4-((2-(3,5-dimethylphenyl)pyrrolidin-1-yl)methyl)phenoxy)benzamide], JSPA071B [(S)-3-fluoro-4-(4-((2-(3,5-bis(trifluoromethyl)phenyl)pyrrolidin-1-yl)methyl)phenoxy)benzamide]. PF-4455242 [2-methyl-N-((2'-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine], PF-4455242 [2-methyl-N-((2'-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine], FP3FBZ [(S)-3-fluoro-4-(4-((2-(3-fluorophenyl)pyrrolidin-1-yl)methyl)phenoxy)benzamide], and naloxone. After long-acting antagonist treatment, pJNK-ir did not increase in mice lacking the κ-opioid receptor; increased pJNK-ir returned to baseline by 48 h after treatment; and a second challenge with nor-BNI 72 h after the first did not increase pJNK-ir. Long-lasting antagonism and increased phospho-JNK-ir were not seen in animals lacking the JNK1 isoform. These results support the hypothesis that the duration of action of small molecule κ-opioid receptor antagonists in vivo is determined by their efficacy in activating JNK1 and that persistent inactivation of the κ-receptor does not require sustained JNK activation.


Asunto(s)
Isoenzimas/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Receptores Opioides kappa/antagonistas & inhibidores , Animales , Línea Celular , Activación Enzimática , Humanos , Ratones , Ratones Endogámicos C57BL
7.
J Pharmacol Exp Ther ; 336(1): 165-77, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20947638

RESUMEN

The normalization of excessive glutamatergic neurotransmission through the activation of metabotropic glutamate 2 (mGlu2) receptors may have therapeutic potential in a variety of psychiatric disorders, including anxiety/depression and schizophrenia. Here, we characterize the pharmacological properties of N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a structurally novel, potent, and selective allosteric potentiator of human and rat mGlu2 receptors (EC(50) = 23 and 13 nM, respectively). THIIC produced anxiolytic-like efficacy in the rat stress-induced hyperthermia assay and the mouse stress-induced elevation of cerebellar cGMP and marble-burying assays. THIIC also produced robust activity in three assays that detect antidepressant-like activity, including the mouse forced-swim test, the rat differential reinforcement of low rate 72-s assay, and the rat dominant-submissive test, with a maximal response similar to that of imipramine. Effects of THIIC in the forced-swim test and marble burying were deleted in mGlu2 receptor null mice. Analysis of sleep electroencephalogram (EEG) showed that THIIC had a sleep-promoting profile with increased non-rapid eye movement (REM) and decreased REM sleep. THIIC also decreased the dark phase increase in extracellular histamine in the medial prefrontal cortex and decreased levels of the histamine metabolite tele-methylhistamine (t-MeHA) in rat cerebrospinal fluid. Collectively, these results indicate that the novel mGlu2-positive allosteric modulator THIIC has robust activity in models used to predict anxiolytic/antidepressant efficacy, substantiating, at least with this molecule, differentiation in the biological impact of mGlu2 potentiation versus mGlu2/3 orthosteric agonism. In addition, we provide evidence that sleep EEG and CSF t-MeHA might function as viable biomarker approaches to facilitate the translational development of THIIC and other mGlu2 potentiators.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Compuestos de Bencilo/farmacología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Imidazoles/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Línea Celular , Sistema Nervioso Central/química , Cerebelo/química , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glutamato Metabotrópico/fisiología
8.
Brain Commun ; 2(2): fcaa208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364602

RESUMEN

Unilateral traumatic brain injury and stroke result in asymmetric postural and motor deficits including contralateral hemiplegia and hemiparesis. In animals, a localized unilateral brain injury recapitulates the human upper motor neuron syndrome in the formation of hindlimb postural asymmetry with contralesional limb flexion and the asymmetry of hindlimb nociceptive withdrawal reflexes. The current view is that these effects are developed due to aberrant activity of motor pathways that descend from the brain into the spinal cord. These pathways and their target spinal circuits may be regulated by local neurohormonal systems that may also mediate effects of brain injury. Here, we evaluate if a unilateral traumatic brain injury induces hindlimb postural asymmetry, a model of postural deficits, and if this asymmetry is spinally encoded and mediated by the endogenous opioid system in rats. A unilateral right-sided controlled cortical impact, a model of clinical focal traumatic brain injury was centred over the sensorimotor cortex and was observed to induce hindlimb postural asymmetry with contralateral limb flexion. The asymmetry persisted after complete spinal cord transection, implicating local neurocircuitry in the development of the deficits. Administration of the general opioid antagonist naloxone and µ-antagonist ß-funaltrexamine blocked the formation of postural asymmetry. Surprisingly, κ-antagonists nor-binaltorphimine and LY2444296 did not affect the asymmetry magnitude but reversed the flexion side; instead of contralesional (left) hindlimb flexion the ipsilesional (right) limb was flexed. The postural effects of the right-side cortical injury were mimicked in animals with intact brain via intrathecal administration of the opioid κ-agonist (2)-(trans)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide that induced hindlimb postural asymmetry with left limb flexion. The δ-antagonist naltrindole produced no effect on the contralesional (left) flexion but inhibited the formation of the ipsilesional (right) limb flexion in brain-injured rats that were treated with κ-antagonist. The effects of the antagonists were evident before and after spinal cord transection. We concluded that the focal traumatic brain injury-induced postural asymmetry was encoded at the spinal level, and was blocked or its side was reversed by administration of opioid antagonists. The findings suggest that the balance in activity of the mirror symmetric spinal neural circuits regulating contraction of the left and right hindlimb muscles is controlled by different subtypes of opioid receptors; and that this equilibrium is impaired after unilateral brain trauma through side-specific opioid mechanism.

9.
Br J Pharmacol ; 177(7): 1525-1537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31713848

RESUMEN

BACKGROUND AND PURPOSE: Nociceptin/orphanin FQ (N/OFQ) peptide and its cognate receptor (NOP) are widely expressed in mesolimbic brain regions where they play an important role in modulating reward and motivation. Early evidence suggested that NOP receptor activation attenuates the rewarding effects of drugs of abuse, including alcohol. However, emerging data indicate that NOP receptor blockade also effectively attenuates alcohol drinking and relapse. To advance our understanding of the role of the N/OFQ-NOP receptor system in alcohol abuse, we examined the effect of NOP receptor blockade on voluntary alcohol drinking at the neurocircuitry level. EXPERIMENTAL APPROACH: Using male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats, we initially evaluated the effects of the selective NOP receptor antagonist LY2817412 (3, 10, and 30 mg·kg-1 , p.o.) on alcohol consumption in a two-bottle free-choice paradigm. We then microinjected LY2817412 (3 and 6 µg·µl-1 per rat) in the central nucleus of the amygdala (CeA), ventral tegmental area (VTA), and nucleus accumbens (NAc). KEY RESULTS: Peripheral LY2817412 administration dose-dependently and selectively reduced voluntary alcohol intake in male and female msP rats. Central injections of LY2817412 markedly attenuated voluntary alcohol intake in both sexes following administration in the CeA and VTA but not in the NAc. CONCLUSION AND IMPLICATIONS: The present results revealed that the CeA and VTA are neuroanatomical substrates that mediate the effects of NOP receptor antagonism on alcohol consumption. Overall, our findings support the potential of NOP receptor antagonism as a treatment strategy to attenuate alcohol use and addiction.


Asunto(s)
Núcleo Amigdalino Central , Preparaciones Farmacéuticas , Consumo de Bebidas Alcohólicas , Animales , Núcleo Amigdalino Central/metabolismo , Femenino , Masculino , Péptidos Opioides/metabolismo , Ratas , Receptores Opioides/metabolismo , Área Tegmental Ventral/metabolismo
10.
Psychopharmacology (Berl) ; 193(1): 121-36, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17384937

RESUMEN

RATIONALE: Data from both preclinical and clinical studies have provided proof of concept that modulation of limbic and forebrain glutamate, via mGlu2/3 receptor agonists, might provide therapeutic benefits in many psychiatric disorders including schizophrenia and anxiety. OBJECTIVE: The aim of this study was to assess the efficacy of a structurally novel, potent, selective mGlu2/3 receptor agonist with improved bioavailability (LY404039) in animal models predictive of antipsychotic and anxiolytic efficacy. MATERIALS AND METHODS: LY404039 was assessed in amphetamine- and phencyclidine-induced hyperlocomotion, conditioned avoidance responding, fear-potentiated startle, marble burying, and rotarod behavioral tests. Monoamine release and turnover were assessed using microdialysis and ex vivo tissue levels. RESULTS: LY404039 attenuated amphetamine- and phencyclidine-induced hyperlocomotion (3-30 and 10 mg/kg, respectively). LY404039 (3-10 mg/kg) inhibited conditioned avoidance responding. LY404039 also reduced fear-potentiated startle in rats (3-30 microg/kg) and marble burying in mice (3-10 mg/kg), indicating anxiolytic-like effects. Importantly, LY404039 did not produce sedative effects or motor impairment as measured by rotarod performance and lack of escape failures in the conditioned avoidance task (at doses up to 30 and 10 mg/kg, respectively). LY404039 (10 mg/kg) also increased dopamine and serotonin release/turnover in the prefrontal cortex. CONCLUSIONS: These results demonstrate the broad preclinical efficacy of LY404039 across multiple animal models of antipsychotic and anxiolytic efficacy. Additionally, this compound modulates mesocortical neurotransmission and provides a novel mechanism for the treatment of psychiatric disorders that may be associated with improved efficacy and reduced incidence of undesirable side effects. As glutamatergic dysfunction has been linked to the etiology of schizophrenia, clinical studies with more potent mGlu2/3 agonists, such as LY404039, may be useful to explore the validity of this hypothesis.


Asunto(s)
Conducta Animal/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Óxidos S-Cíclicos/farmacología , Trastornos Mentales/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/agonistas , Aminoácidos/farmacología , Anfetamina/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Óxidos S-Cíclicos/química , Óxidos S-Cíclicos/uso terapéutico , Diazepam/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Trastornos Mentales/psicología , Ratones , Estructura Molecular , Actividad Motora/efectos de los fármacos , Fenciclidina/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Xantenos/farmacología
11.
Neuropsychopharmacology ; 42(3): 695-706, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27562376

RESUMEN

The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the NOP/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal, and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin, and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125, or 0.5 mg/infusion) both under a fixed ratio 1 and a progressive ratio schedule of reinforcement compared with wild-type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 µg/infusion) and ethanol (10% v/v) self-administration, they showed significantly lower drug intake compared with Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.


Asunto(s)
Conducta Animal/efectos de los fármacos , Trastornos Relacionados con Cocaína/genética , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Aprendizaje/efectos de los fármacos , Antagonistas de Narcóticos/farmacología , Receptores Opioides/genética , Animales , Cocaína/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/administración & dosificación , Ratas , Ratas Transgénicas , Ratas Wistar , Autoadministración , Receptor de Nociceptina
12.
Neuropsychopharmacology ; 31(6): 1135-45, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16205780

RESUMEN

Repeated exposure to stressful conditions is linked to the etiology of affective disorders. The melanin-concentrating hormone-1 receptor (MCHR1) may be a novel mechanism that is involved in the modulation of stress responses and affective states. The role of MCHR1 in neuroendocrine, behavioral, and neurochemical stress, and anxiety-related responses was examined by monitoring the effects of melanin-concentrating hormone (MCH) and the selective MCHR1 antagonist, GW3430, in inbred C57Bl/6NTac and MCHR1-knockout (KO) and wild-type (WT) mice. Intracerebroventricular injection of MCH increased plasma corticosterone, and produced anxiety-related responses in the elevated plus maze. The selective MCHR1 antagonist, GW3430, blocked the neuroendocrine and behavioral effects of MCH and produced anxiolytic-like effects by itself in animal models of anxiety. Moreover, KO mice had an anxiolytic-like phenotype in behavioral models of anxiety, and GW3430 had anxiolytic-like effects in WT, but not KO mice. Lastly, stressor-evoked acetylcholine release within the prefrontal cortex of inbred and WT mice, but not KO mice, was blocked by GW3430. We show that MCH elicits anxiety-like responses and that the effects of a selective MCHR1 antagonist and the phenotype of KO mice are consistent with anxiolytic-like action. Distinct behavioral, physiological, and neurochemical stress, and anxiety-related responses were selectively modulated by the MCHR1, and these actions may involve corticolimbic regulation of stress responsivity and anxiety.


Asunto(s)
Conducta Animal/fisiología , Química Encefálica/fisiología , Sistemas Neurosecretores/metabolismo , Receptores de Somatostatina/fisiología , Estrés Fisiológico , Acetilcolina/metabolismo , Hormona Adrenocorticotrópica/sangre , Alprazolam/farmacología , Animales , Ansiolíticos/farmacología , Conducta Animal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Corticosterona/sangre , Relación Dosis-Respuesta a Droga , Hormonas Hipotalámicas/administración & dosificación , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Melaninas/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistemas Neurosecretores/efectos de los fármacos , Hormonas Hipofisarias/administración & dosificación , Distribución Aleatoria , Receptores de Somatostatina/antagonistas & inhibidores , Receptores de Somatostatina/deficiencia , Estrés Fisiológico/metabolismo , Estrés Fisiológico/fisiopatología , Estrés Fisiológico/psicología
13.
Pharmacol Res Perspect ; 4(6): e00275, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28097008

RESUMEN

Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide whose receptor is designated ORL1 or nociceptin receptor (NOP). We utilized a potent, selective, and orally bioavailable antagonist with documented engagement with NOP receptors in vivo to assess antidepressant- and anxiolytic-related pharmacological effects of NOP receptor blockade along with measures of cognitive and motor impingement. LY2940094 ([2-[4-[(2-chloro-4,4-difluoro-spiro[5H-thieno[2,3-c]pyran-7,4'-piperidine]-1'-yl)methyl]-3-methyl-pyrazol-1-yl]-3-pyridyl]methanol) displayed antidepressant-like behavioral effects in the forced-swim test in mice, an effect absent in NOP -/- mice. LY2940094 also augmented the behavioral effect of fluoxetine without changing target occupancies (NOP and serotonin reuptake transporter [SERT]). LY2940094 did not have effects under a differential-reinforcement of low rate schedule. Although anxiolytic-like effects were not observed in some animal models (conditioned suppression, 4-plate test, novelty-suppressed feeding), LY2940094 had effects like that of anxiolytic drugs in three assays: fear-conditioned freezing in mice, stress-induced increases in cerebellar cGMP in mice, and stress-induced hyperthermia in rats. These are the first reports of anxiolytic-like activity with a systemically viable NOP receptor antagonist. LY2940094 did not disrupt performance in either a 5-choice serial reaction time or delayed matching-to-position assay. LY2940094 was also not an activator or suppressor of locomotion in rodents nor did it induce failures of rotarod performance. These data suggest that LY2940094 has unique antidepressant- and anxiolytic-related pharmacological effects in rodents. Clinical proof of concept data on this molecule in depressed patients have been reported elsewhere.

14.
Behav Neurosci ; 119(5): 1254-76, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16300433

RESUMEN

Neural activity in central and basolateral amygdala nuclei (CeA and BLA, respectively) was recorded during delay eyeblink conditioning, Pavlovian fear conditioning, and signaled barpress avoidance. During paired training, the CeA exhibited robust learning-related excitatory activity during all 3 tasks. By contrast, the BLA exhibited minimal activity during eyeblink conditioning, while demonstrating pronounced increases in learning-related excitatory responsiveness during fear conditioning and barpress avoidance. In addition, the relative amount of amygdalar activation observed appeared to be related to the relative intensity of the unconditioned stimulus and somatic requirements of the task. Results suggest the CeA mediates the Pavlovian association between sensory stimuli and the BLA mediates the modulation of instrumental responding through the assignment of motivational value to the unconditioned stimulus.


Asunto(s)
Potenciales de Acción/fisiología , Amígdala del Cerebelo/fisiología , Reacción de Prevención/fisiología , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Miedo , Amígdala del Cerebelo/anatomía & histología , Animales , Conducta Animal , Electromiografía/métodos , Extinción Psicológica/fisiología , Reacción Cataléptica de Congelación/fisiología , Frecuencia Cardíaca/fisiología , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Factores de Tiempo
15.
Psychopharmacology (Berl) ; 183(2): 226-40, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16175401

RESUMEN

RATIONALE: Accumulating evidence suggests that drugs acting on the glutamatergic system may represent promising novel therapeutic targets for the treatment of anxiety disorders. The stress-induced hyperthermia paradigm has been used widely to model some of the physiological symptoms associated with anxiety disorders and has produced results that are predictive of clinical efficacy. We have modified this paradigm to measure the autonomic consequences of stress induced by the fear of predation in mice. OBJECTIVE: To evaluate the efficacy of several classes of metabotropic and ionotropic glutamate receptor ligands, as well as known anxiolytics and psychotropic comparators, in attenuating predatory-stress-induced hyperthermia. METHODS: Male DBA/2 mice were implanted with radiotelemetric transmitters in the peritoneal cavity to measure stress-related increases in core body temperature, following placement in a novel cage containing soiled rat shavings. RESULTS: Clinically active compounds such as chlordiazepoxide (5-10 mg/kg), alprazolam (0.3-3 mg/kg), and buspirone (10-30 mg/kg) exhibited an anxiolytic profile. Assessment of glutamatergic agents indicated that the mGlu1 receptor antagonist LY456236 (10-30 mg/kg), mGlu5 receptor antagonist MPEP (10-30 mg/kg), mGlu2/3 receptor agonist LY354740 (3-10 mg/kg), mGlu2 receptor potentiator LY566332 (30 and 100 mg/kg), mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (30-60 mg/kg), competitive NMDA receptor antagonist LY235959 (1 mg/kg), AMPA receptor antagonist GYKI-52466 (10-20 mg/kg), and glycine transporter-1 (GlyT-1) inhibitor ALX-5407 (3-10 mg/kg) dose-dependently attenuated stress-induced hyperthermia. The AMPA receptor potentiator LY451646, iGlu5 kainate receptor antagonist LY382884, glycine(B) receptor partial agonist D: -cycloserine, and GlyT-1 inhibitor ORG-24461 were ineffective in this model. CONCLUSION: Select metabotropic and ionotropic glutamate receptor ligands exhibited an anxiolytic profile, as measured by the attenuation of stress-induced hyperthermia, and may represent viable targets for the development of pharmacological treatments for anxiety-related disorders.


Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Fiebre/tratamiento farmacológico , Ligandos , Receptores de Ácido Kaínico/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fiebre/etiología , Masculino , Ratones , Ratones Endogámicos DBA , Estrés Fisiológico/complicaciones
16.
Front Neurosci ; 8: 33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24616657

RESUMEN

To examine the role of orexin-1 and orexin-2 receptor activity on ethanol self-administration, compounds that differentially target orexin (OX) receptor subtypes were assessed in various self-administration paradigms using high-drinking rodent models. Effects of the OX1 antagonist SB334867, the OX2 antagonist LSN2424100, and the mixed OX1/2 antagonist almorexant (ACT-078573) on home cage ethanol consumption were tested in ethanol-preferring (P) rats using a 2-bottle choice procedure. In separate experiments, effects of SB334867, LSN2424100, and almorexant on operant ethanol self-administration were assessed in P rats maintained on a progressive ratio operant schedule of reinforcement. In a third series of experiments, SB334867, LSN2424100, and almorexant were administered to ethanol-preferring C57BL/6J mice to examine effects of OX receptor blockade on ethanol intake in a binge-like drinking (drinking-in-the-dark) model. In P rats with chronic home cage free-choice ethanol access, SB334867 and almorexant significantly reduced ethanol intake, but almorexant also reduced water intake, suggesting non-specific effects on consummatory behavior. In the progressive ratio operant experiments, LSN2424100 and almorexant reduced breakpoints and ethanol consumption in P rats, whereas the almorexant inactive enantiomer and SB334867 did not significantly affect the motivation to consume ethanol. As expected, vehicle-injected mice exhibited binge-like drinking patterns in the drinking-in-the-dark model. All three OX antagonists reduced both ethanol intake and resulting blood ethanol concentrations relative to vehicle-injected controls, but SB334867 and LSN2424100 also reduced sucrose consumption in a different cohort of mice, suggesting non-specific effects. Collectively, these results contribute to a growing body of evidence indicating that OX1 and OX2 receptor activity influences ethanol self-administration, although the effects may not be selective for ethanol consumption.

17.
Pharmacol Ther ; 141(3): 283-99, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24189487

RESUMEN

Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995. The generation of specific agonists, antagonists and receptor deficient mice and rats has enabled progress in elucidating the biological functions of N/OFQ. Additionally, radio-imaging technologies have been advanced for investigation of this system in animals and humans. Together with traditional neurobehavioral techniques, these tools have been utilized to identify the biological significance of the N/OFQ system and its interacting partners. The present review focuses on the role of N/OFQ in the regulation of feeding, body weight homeostasis, stress, the stress-related psychiatric disorders of depression and anxiety, and in drug and alcohol dependence. Critical evaluation of the current scientific preclinical literature suggests that small molecule modulators of nociceptin opioid peptide receptors (NOP) might be useful in the treatment of diseases related to these biological functions. In particular, the literature data suggest that antagonism of NOP receptors will produce anti-obesity and antidepressant activities in humans. However, there are also contradictory data discussed. The current literature on the role of N/OFQ in anxiety and addiction, on the other hand points primarily to a role of agonist modulation being potentially therapeutic. Some drug-like molecules that function either as agonists or antagonists of NOP receptors have been optimized for human clinical study to test some of these hypotheses. The discovery of PET ligands for NOP receptors, combined with the pharmacological tools and burgeoning preclinical data set discussed here bodes well for a rapid advancement of clinical understanding and potential therapeutic benefit.


Asunto(s)
Diseño de Fármacos , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Humanos , Ratones , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/fisiopatología , Antagonistas de Narcóticos , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Ratas , Receptores Opioides/agonistas , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/fisiopatología , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Sustancias/fisiopatología , Receptor de Nociceptina , Nociceptina
18.
Front Neurosci ; 8: 5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24478625

RESUMEN

We describe a novel, potent and selective orexin-2 (OX2)/hypocretin-2 receptor antagonist with in vivo activity in an animal model predictive of antidepressant-like efficacy. N-biphenyl-2-yl-4-fluoro-N-(1H-imidazol-2-ylmethyl) benzenesulfonamide HCl (LSN2424100) binds with high affinity to recombinant human OX2 receptors (Ki = 4.5 nM), and selectivity over OX1 receptors (Ki = 393 nM). LSN2424100 inhibited OXA-stimulated intracellular calcium release in HEK293 cells expressing human and rat OX2 receptors (Kb = 0.44 and 0.83 nM, respectively) preferentially over cells expressing human and rat OX1 (Kb = 90 and 175 nM, respectively). LSN2424100 exhibits good exposure in Sprague-Dawley rats after IP, but not PO, administration of a 30 mg/kg dose (AUC0-6 h = 1300 and 269 ng(*)h/mL, respectively). After IP administration in rats and mice, LSN2424100 produces dose-dependent antidepressant-like activity in the delayed-reinforcement of low-rate (DRL) assay, a model predictive of antidepressant-like efficacy. Efficacy in the DRL model was lost in mice lacking OX2, but not OX1 receptors, confirming OX2-specific activity. Importantly, antidepressant-like efficacy of the tricyclic antidepressant, imipramine, was maintained in both OX1 and OX2 receptor knock-out mice. In conclusion, the novel OX2 receptor antagonist, LSN2424100, is a valuable tool compound that can be used to explore the role of OX2 receptor-mediated signaling in mood disorders.

19.
J Clin Pharmacol ; 54(9): 968-78, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24619932

RESUMEN

Accumulating evidence indicates that selective antagonism of kappa opioid receptors may provide therapeutic benefit in the treatment of major depressive disorder, anxiety disorders, and substance use disorders. LY2456302 is a high-affinity, selective kappa opioid antagonist that demonstrates >30-fold functional selectivity over mu and delta opioid receptors. The safety, tolerability, and pharmacokinetics (PK) of LY2456302 were investigated following single oral doses (2-60 mg), multiple oral doses (2, 10, and 35 mg), and when co-administered with ethanol. Plasma concentrations of LY2456302 were measured by liquid chromatography-tandem mass spectrometry method. Safety analyses were conducted on all enrolled subjects. LY2456302 doses were well-tolerated with no clinically significant findings. No safety concerns were seen on co-administration with ethanol. No evidence for an interaction between LY2456302 and ethanol on cognitive-motor performance was detected. LY2456302 displayed rapid oral absorption and a terminal half-life of approximately 30-40 hours. Plasma exposure of LY2456302 increased proportionally with increasing doses and reached steady state after 6-8 days of once-daily dosing. Steady-state PK of LY2456302 were not affected by coadministration of a single dose of ethanol. No clinically important changes in maximum concentration (Cmax ) or AUC of ethanol (in the presence of LY2456302) were observed.


Asunto(s)
Benzamidas , Etanol , Antagonistas de Narcóticos , Pirrolidinas , Receptores Opioides kappa/antagonistas & inhibidores , Administración Oral , Hormona Adrenocorticotrópica/sangre , Adulto , Consumo de Bebidas Alcohólicas , Benzamidas/administración & dosificación , Benzamidas/efectos adversos , Benzamidas/sangre , Benzamidas/farmacocinética , Cognición/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Interacciones Farmacológicas , Etanol/administración & dosificación , Etanol/sangre , Etanol/farmacocinética , Femenino , Voluntarios Sanos , Humanos , Hidrocortisona/sangre , Hormona Luteinizante/sangre , Masculino , Persona de Mediana Edad , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/efectos adversos , Antagonistas de Narcóticos/sangre , Antagonistas de Narcóticos/farmacocinética , Equilibrio Postural/efectos de los fármacos , Prolactina/sangre , Pirrolidinas/administración & dosificación , Pirrolidinas/efectos adversos , Pirrolidinas/sangre , Pirrolidinas/farmacocinética , Tiempo de Reacción/efectos de los fármacos
20.
Neuropharmacology ; 77: 131-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24071566

RESUMEN

Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists has used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results. Herein, we report for the first time the in vitro and in vivo pharmacological profile of a novel, potent kappa opioid receptor antagonist with excellent selectivity over other receptors and markedly improved drug-like properties over existing research tools. LY2456302 exhibits canonical pharmacokinetic properties that are favorable for clinical development, with rapid absorption (t(max): 1-2 h) and good oral bioavailability (F = 25%). Oral LY2456302 administration selectively and potently occupied central kappa opioid receptors in vivo (ED50 = 0.33 mg/kg), without evidence of mu or delta receptor occupancy at doses up to 30 mg/kg. LY2456302 potently blocked kappa-agonist-mediated analgesia and disruption of prepulse inhibition, without affecting mu-agonist-mediated effects at doses >30-fold higher. Importantly, LY2456302 did not block kappa-agonist-induced analgesia one week after administration, indicating lack of long-lasting pharmacodynamic effects. In contrast to the nonselective opioid antagonist naltrexone, LY2456302 produced antidepressant-like effects in the mouse forced swim test and enhanced the effects of imipramine and citalopram. LY2456302 reduced ethanol self-administration in alcohol-preferring (P) rats and, unlike naltrexone, did not exhibit significant tolerance upon 4 days of repeated dosing. LY2456302 is a centrally-penetrant, potent, kappa-selective antagonist with pharmacokinetic properties favorable for clinical development and activity in animal models predictive of efficacy in mood and addictive disorders.


Asunto(s)
Benzamidas/farmacología , Depresión/tratamiento farmacológico , Antagonistas de Narcóticos/farmacología , Pirrolidinas/farmacología , Receptores Opioides kappa/antagonistas & inhibidores , Reflejo de Sobresalto/efectos de los fármacos , Filtrado Sensorial/efectos de los fármacos , Analgesia , Animales , Antidepresivos/farmacocinética , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Benzamidas/farmacocinética , Benzamidas/uso terapéutico , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Masculino , Ratones , Antagonistas de Narcóticos/farmacocinética , Antagonistas de Narcóticos/uso terapéutico , Pirrolidinas/farmacocinética , Pirrolidinas/uso terapéutico , Ratas , Autoadministración
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda