Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201613

RESUMEN

Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/fisiología , Prebióticos , Probióticos/farmacología , Uniones Estrechas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo , Receptores Toll-Like/metabolismo
2.
bioRxiv ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38979337

RESUMEN

Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs were processed for single cell RNA sequencing analysis, and predicted upstream regulators were assessed in a porcine intestinal epithelial cell line (IPEC-J2) and banked tissues. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation included colony stimulating factor-1 (CSF-1). We validated age-dependent induction of CSF-1 by ischemia and documented that CSF-1 and CSF1R co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued (but not control) neonates. Further, the CSF1R inhibitor BLZ945 reduced restitution in scratch wounded IPEC-J2 cells. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model. NEW & NOTEWORTHY: These studies validate an approach to identify and predict upstream regulation of restituting epithelium in a unique pig intestinal ischemic injury model. Identification of potential molecular mediators of restitution, such as CSF-1, will inform the development of targeted therapeutic interventions for medical management of patients with ischemia-mediated intestinal injury.

3.
Front Vet Sci ; 9: 834598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400098

RESUMEN

In the United States, gastrointestinal disorders account for in excess of $130 billion in healthcare expenditures and 22 million hospitalizations annually. Many of these disorders, including necrotizing enterocolitis of infants, obesity, diarrhea, and inflammatory bowel disease, are associated with disturbances in the gastrointestinal microbial composition and metabolic activity. To further elucidate the pathogenesis of these disease syndromes as well as uncover novel therapies and preventative measures, gastrointestinal researchers should consider the pig as a powerful, translational model of the gastrointestinal microbiota. This is because pigs and humans share striking similarities in their intestinal microbiota as well as gastrointestinal anatomy and physiology. The introduction of gnotobiotic pigs, particularly human-microbial associated pigs, has already amplified our understanding of many gastrointestinal diseases that have detrimental effects on human health worldwide. Continued utilization of these models will undoubtedly inform translational advancements in future gastrointestinal research and potential therapeutics.

4.
Viruses ; 14(3)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336972

RESUMEN

Felis catus gammaherpesvirus-1 (FcaGHV1), a novel candidate oncogenic virus, infects cats worldwide. Whether the oropharynx is a site of virus shedding and persistence, and whether oronasal carcinomas harbor FcaGHV1 nucleic acid were investigated. In a prospective molecular epidemiological study, FcaGHV1 DNA was detected by cPCR in oropharyngeal swabs from 26/155 (16.8%) of cats. Oropharyngeal shedding was less frequently detected in kittens ≤3 months of age (5/94, 5.3%) than in older animals; >3 months to ≤1 year: 8/26, 30.8%, (p = 0.001, OR 7.91, 95% CI (2.320, 26.979)); >1 year to ≤6 years: 10/20, 50%, (p < 0.001, OR 17.8 95% CI (5.065, 62.557)); >6 years: 3/15, 33% (p = 0.078). Provenance (shelter-owned/privately owned) was not associated with shedding. In situ hybridization (ISH) identified FcaGHV1-infected cells in salivary glandular epithelium but not in other oronasal tissues from two of three cats shedding viral DNA in the oropharynx. In a retrospective dataset of 11 oronasopharyngeal carcinomas, a single tumor tested positive for FcaGHV1 DNA by ISH, a papillary carcinoma, where scattered neoplastic cells showed discrete nuclear hybridization. These data support the oronasopharynx as a site of FcaGHV1 shedding, particularly after maternal antibodies are expected to decline. The salivary epithelium is identified as a potential site of FcaGHV1 persistence. No evidence supporting a role for FcaGHV1 in feline oronasal carcinomas was found in the examined tumours.


Asunto(s)
Carcinoma , Enfermedades de los Gatos , Gammaherpesvirinae , Infecciones por Herpesviridae , Animales , Carcinoma/complicaciones , Gatos , ADN Viral/genética , Epitelio , Femenino , Gammaherpesvirinae/genética , Orofaringe , Estudios Prospectivos , Estudios Retrospectivos , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda