Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29668305

RESUMEN

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazoles/metabolismo , Oligopéptidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fenómenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostasis , Imidazoles/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estructura Molecular , Oligopéptidos/química , Oligopéptidos/genética , Operón , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968106

RESUMEN

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Asunto(s)
Proteínas Bacterianas , Cobre , Haemophilus influenzae , Oxazolona , Factores de Virulencia , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidad , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Cobre/metabolismo , Cobre/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Hierro/metabolismo , Procesamiento Proteico-Postraduccional , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Operón , Cisteína/metabolismo
3.
Chem Rev ; 124(3): 1288-1320, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305159

RESUMEN

Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.


Asunto(s)
Cobre , Metano , Cobre/química , Hierro , Metanol , Oxigenasas/metabolismo , Oxidación-Reducción , Oxigenasas de Función Mixta
4.
Proc Natl Acad Sci U S A ; 119(13): e2123566119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35320042

RESUMEN

SignificanceMethanobactins (Mbns), copper-binding peptidic compounds produced by some bacteria, are candidate therapeutics for human diseases of copper overload. The paired oxazolone-thioamide bidentate ligands of methanobactins are generated from cysteine residues in a precursor peptide, MbnA, by the MbnBC enzyme complex. MbnBC activity depends on the presence of iron and oxygen, but the catalytically active form has not been identified. Here, we provide evidence that a dinuclear Fe(II)Fe(III) center in MbnB, which is the only representative of a >13,000-member protein family to be characterized, is responsible for this reaction. These findings expand the known roles of diiron enzymes in biology and set the stage for mechanistic understanding, and ultimately engineering, of the MbnBC biosynthetic complex.


Asunto(s)
Cisteína , Oxazolona , Cobre/metabolismo , Compuestos Férricos/química , Humanos , Imidazoles , Oligopéptidos , Oxígeno/metabolismo , Tioamidas
5.
Biochemistry ; 63(9): 1170-1177, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38587906

RESUMEN

The MbnBC enzyme complex converts cysteine residues in a peptide substrate, MbnA, to oxazolone/thioamide groups during the biosynthesis of copper chelator methanobactin (Mbn). MbnBC belongs to the mixed-valent diiron oxygenase (MVDO) family, of which members use an Fe(II)Fe(III) cofactor to react with dioxygen for substrate modification. Several crystal structures of the inactive Fe(III)Fe(III) form of MbnBC alone and in complex with MbnA have been reported, but a mechanistic understanding requires determination of the oxidation states of the crystallographically observed Fe ions in the catalytically active Fe(II)Fe(III) state, along with the site of MbnA binding. Here, we have used electron nuclear double resonance (ENDOR) spectroscopy to determine such structural and electronic properties of the active site, in particular, the mode of substrate binding to the MV state, information not accessible by X-ray crystallography alone. The oxidation states of the two Fe ions were determined by 15N ENDOR analysis. The presence and locations of both bridging and terminal exogenous solvent ligands were determined using 1H and 2H ENDOR. In addition, 2H ENDOR using an isotopically labeled MbnA substrate indicates that MbnA binds to the Fe(III) ion of the cluster via the sulfur atom of its N-terminal modifiable cysteine residue, with displacement of a coordinated solvent ligand as shown by complementary 1H ENDOR. These results, which underscore the utility of ENDOR in studying MVDOs, provide a molecular picture of the initial steps in Mbn biosynthesis.


Asunto(s)
Imidazoles , Oligopéptidos , Imidazoles/metabolismo , Imidazoles/química , Oligopéptidos/metabolismo , Oligopéptidos/química , Oligopéptidos/biosíntesis , Oxidación-Reducción , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Oxigenasas/metabolismo , Oxigenasas/química , Dominio Catalítico , Especificidad por Sustrato , Modelos Moleculares , Hierro/metabolismo , Hierro/química
6.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074779

RESUMEN

Some methane-oxidizing bacteria use the ribosomally synthesized, posttranslationally modified natural product methanobactin (Mbn) to acquire copper for their primary metabolic enzyme, particulate methane monooxygenase. The operons encoding the machinery to biosynthesize and transport Mbns typically include genes for two proteins, MbnH and MbnP, which are also found as a pair in other genomic contexts related to copper homeostasis. While the MbnH protein, a member of the bacterial diheme cytochrome c peroxidase (bCcP)/MauG superfamily, has been characterized, the structure and function of MbnP, the relationship between the two proteins, and their role in copper homeostasis remain unclear. Biochemical characterization of MbnP from the methanotroph Methylosinus trichosporium OB3b now reveals that MbnP binds a single copper ion, present in the +1 oxidation state, with high affinity. Copper binding to MbnP in vivo is dependent on oxidation of the first tryptophan in a conserved WxW motif to a kynurenine, a transformation that occurs through an interaction of MbnH with MbnP. The 2.04-Å-resolution crystal structure of MbnP reveals a unique fold and an unusual copper-binding site involving a histidine, a methionine, a solvent ligand, and the kynurenine. Although the kynurenine residue may not serve as a CuI primary-sphere ligand, being positioned ∼2.9 Å away from the CuI ion, its presence is required for copper binding. Genomic neighborhood analysis indicates that MbnP proteins, and by extension kynurenine-containing copper sites, are widespread and may play diverse roles in microbial copper homeostasis.


Asunto(s)
Proteínas Bacterianas/química , Cobre/química , Quinurenina/química , Metaloproteínas/química , Methylosinus trichosporium/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Cristalografía por Rayos X , Quinurenina/biosíntesis , Quinurenina/genética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Dominios Proteicos
7.
Biochemistry ; 62(5): 1082-1092, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36812111

RESUMEN

The diheme bacterial cytochrome c peroxidase (bCcP)/MauG superfamily is a diverse set of enzymes that remains largely uncharacterized. One recently discovered member, MbnH, converts a tryptophan residue in its substrate protein, MbnP, to kynurenine. Here we show that upon reaction with H2O2, MbnH forms a bis-Fe(IV) intermediate, a state previously detected in just two other enzymes, MauG and BthA. Using absorption, Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies coupled with kinetic analysis, we characterized the bis-Fe(IV) state of MbnH and determined that this intermediate decays back to the diferric state in the absence of MbnP substrate. In the absence of MbnP substrate, MbnH can also detoxify H2O2 to prevent oxidative self damage, unlike MauG, which has long been viewed as the prototype for bis-Fe(IV) forming enzymes. MbnH performs a different reaction from MauG, while the role of BthA remains unclear. All three enzymes can form a bis-Fe(IV) intermediate but within distinct kinetic regimes. The study of MbnH significantly expands our knowledge of enzymes that form this species. Computational and structural analyses indicate that electron transfer between the two heme groups in MbnH and between MbnH and the target tryptophan in MbnP likely occurs via a hole-hopping mechanism involving intervening tryptophan residues. These findings set the stage for discovery of additional functional and mechanistic diversity within the bCcP/MauG superfamily.


Asunto(s)
Methylosinus trichosporium , Methylosinus trichosporium/metabolismo , Triptófano/química , Cinética , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Bacterias/metabolismo
8.
J Biol Chem ; 298(1): 101445, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822841

RESUMEN

The Escherichia coli yobA-yebZ-yebY (AZY) operon encodes the proteins YobA, YebZ, and YebY. YobA and YebZ are homologs of the CopC periplasmic copper-binding protein and the CopD putative copper importer, respectively, whereas YebY belongs to the uncharacterized Domain of Unknown Function 2511 family. Despite numerous studies of E. coli copper homeostasis and the existence of the AZY operon in a range of bacteria, the operon's proteins and their functional roles have not been explored. In this study, we present the first biochemical and functional studies of the AZY proteins. Biochemical characterization and structural modeling indicate that YobA binds a single Cu2+ ion with high affinity. Bioinformatics analysis shows that YebY is widespread and encoded either in AZY operons or in other genetic contexts unrelated to copper homeostasis. We also determined the 1.8 Å resolution crystal structure of E. coli YebY, which closely resembles that of the lantibiotic self-resistance protein MlbQ. Two strictly conserved cysteine residues form a disulfide bond, consistent with the observed periplasmic localization of YebY. Upon treatment with reductants, YebY binds Cu+ and Cu2+ with low affinity, as demonstrated by metal-binding analysis and tryptophan fluorescence. Finally, genetic manipulations show that the AZY operon is not involved in copper tolerance or antioxidant defense. Instead, YebY and YobA are required for the activity of the copper-related NADH dehydrogenase II. These results are consistent with a potential role of the AZY operon in copper delivery to membrane proteins.


Asunto(s)
Cobre , Proteínas de Escherichia coli , Escherichia coli , Operón , Proteínas de Unión Periplasmáticas , Quelantes/metabolismo , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Relación Estructura-Actividad
9.
Chem Soc Rev ; 50(5): 3424-3436, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33491685

RESUMEN

Methanotrophic bacteria represent a potential route to methane utilization and mitigation of methane emissions. In the first step of their metabolic pathway, aerobic methanotrophs use methane monooxygenases (MMOs) to activate methane, oxidizing it to methanol. There are two types of MMOs: a particulate, membrane-bound enzyme (pMMO) and a soluble, cytoplasmic enzyme (sMMO). The two MMOs are completely unrelated, with different architectures, metal cofactors, and mechanisms. The more prevalent of the two, pMMO, is copper-dependent, but the identity of its copper active site remains unclear. By contrast, sMMO uses a diiron active site, the catalytic cycle of which is well understood. Here we review the current state of knowledge for both MMOs, with an emphasis on recent developments and emerging hypotheses. In addition, we discuss obstacles to developing expression systems, which are needed to address outstanding questions and to facilitate future protein engineering efforts.


Asunto(s)
Bacterias/metabolismo , Metano/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Metales/química , Metales/metabolismo , Metano/química , Oxidación-Reducción , Oxigenasas/química , Oxigenasas/genética , Ingeniería de Proteínas
10.
Biochemistry ; 60(38): 2845-2850, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34510894

RESUMEN

Methanobactins (Mbns) are ribosomally produced, post-translationally modified peptidic natural products that bind copper with high affinity. Methanotrophic bacteria use Mbns to acquire copper needed for enzymatic methane oxidation. Despite the presence of Mbn operons in a range of methanotroph and other bacterial genomes, few Mbns have been isolated and structurally characterized. Here we report the isolation of a novel Mbn from the methanotroph Methylosinus (Ms.) sp. LW3. Mass spectrometric and nuclear magnetic resonance spectroscopic data indicate that this Mbn, the largest characterized to date, consists of a 13-amino acid backbone modified to include pyrazinedione/oxazolone rings and neighboring thioamide groups derived from cysteine residues. The pyrazinedione ring is more stable to acid hydrolysis than the oxazolone ring and likely protects the Mbn from degradation. The structure corresponds exactly to that predicted on the basis of the Ms. sp. LW3 Mbn operon content, providing support for the proposed role of an uncharacterized biosynthetic enzyme, MbnF, and expanding the diversity of known Mbns.


Asunto(s)
Cobre/metabolismo , Methylosinus/enzimología , Methylosinus/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/metabolismo , Productos Biológicos/metabolismo , Quelantes/química , Cobre/química , Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/genética , Genoma Bacteriano/genética , Imidazoles/metabolismo , Metano/metabolismo , Methylosinus/genética , Methylosinus trichosporium/enzimología , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Oligopéptidos/metabolismo , Operón/genética , Oxidación-Reducción , Péptidos/metabolismo
11.
J Am Chem Soc ; 143(37): 15358-15368, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34498465

RESUMEN

In nature, methane is oxidized to methanol by two enzymes, the iron-dependent soluble methane monooxygenase (sMMO) and the copper-dependent particulate MMO (pMMO). While sMMO's diiron metal active site is spectroscopically and structurally well-characterized, pMMO's copper sites are not. Recent EPR and ENDOR studies have established the presence of two monocopper sites, but the coordination environment of only one has been determined, that within the PmoB subunit and denoted CuB. Moreover, this recent work only focused on a type I methanotrophic pMMO, while previous observations of the type II enzyme were interpreted in terms of the presence of a dicopper site. First, this report shows that the type II Methylocystis species strain Rockwell pMMO, like the type I pMMOs, contains two monocopper sites and that its CuB site has a coordination environment identical to that of type I enzymes. As such, for the full range of pMMOs this report completes the refutation of prior and ongoing suggestions of multicopper sites. Second, and of primary importance, EPR/ENDOR measurements (a) for the first time establish the coordination environment of the spectroscopically observed site, provisionally denoted CuC, in both types of pMMO, thereby (b) establishing the assignment of this site observed by EPR to the crystallographically observed metal-binding site in the PmoC subunit. Finally, these results further indicate that CuC is the likely site of biological methane oxidation by pMMO, a conclusion that will serve as a foundation for proposals regarding the mechanism of this reaction.


Asunto(s)
Cobre/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Methylocystaceae/enzimología , Oxigenasas/química , Oxigenasas/metabolismo , Methylocystaceae/metabolismo , Modelos Moleculares , Conformación Proteica
12.
Proc Natl Acad Sci U S A ; 115(9): 2108-2113, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440418

RESUMEN

The copper-transporting P1B-ATPases, which play a key role in cellular copper homeostasis, have been divided traditionally into two subfamilies, the P1B-1-ATPases or CopAs and the P1B-3-ATPases or CopBs. CopAs selectively export Cu+ whereas previous studies and bioinformatic analyses have suggested that CopBs are specific for Cu2+ export. Biochemical and spectroscopic characterization of Sphaerobacter thermophilus CopB (StCopB) show that, while it does bind Cu2+, the binding site is not the prototypical P1B-ATPase transmembrane site and does not involve sulfur coordination as proposed previously. Most important, StCopB exhibits metal-stimulated ATPase activity in response to Cu+, but not Cu2+, indicating that it is actually a Cu+ transporter. X-ray absorption spectroscopic studies indicate that Cu+ is coordinated by four sulfur ligands, likely derived from conserved cysteine and methionine residues. The histidine-rich N-terminal region of StCopB is required for maximal activity, but is inhibitory in the presence of divalent metal ions. Finally, reconsideration of the P1B-ATPase classification scheme suggests that the P1B-1- and P1B-3-ATPase subfamilies both comprise Cu+ transporters. These results are completely consistent with the known presence of only Cu+ within the reducing environment of the cytoplasm, which should eliminate the need for a Cu2+ P1B-ATPase.


Asunto(s)
Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/clasificación , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/genética , Variación Genética , Unión Proteica , Alineación de Secuencia , Azufre
13.
J Biol Chem ; 294(44): 16351-16363, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527086

RESUMEN

Copper is critically important for methanotrophic bacteria because their primary metabolic enzyme, particulate methane monooxygenase (pMMO), is copper-dependent. In addition to pMMO, many other copper proteins are encoded in the genomes of methanotrophs, including proteins that contain periplasmic copper-Achaperone (PCuAC) domains. Using bioinformatics analyses, we identified three distinct classes of PCuAC domain-containing proteins in methanotrophs, termed PmoF1, PmoF2, and PmoF3. PCuAC domains from other types of bacteria bind a single Cu(I) ion via an HXnMX21/22HXM motif, which is also present in PmoF3, but PmoF1 and PmoF2 lack this motif entirely. Instead, the PCuAC domains of PmoF1 and PmoF2 bind only Cu(II), and PmoF1 binds additional Cu(II) ions in a His-rich extension to its PCuAC domain. Crystal structures of the PmoF1 and PmoF2 PCuAC domains reveal that Cu(II) is coordinated by an N-terminal histidine brace HX10H motif. This binding site is distinct from those of previously characterized PCuAC domains but resembles copper centers in CopC proteins and lytic polysaccharide monooxygenase (LPMO) enzymes. Bioinformatics analysis of the entire PCuAC family reveals previously unappreciated diversity, including sequences that contain both the HXnMX21/22HXM and HX10H motifs, and sequences that lack either set of copper-binding ligands. These findings provide the first characterization of an additional class of copper proteins from methanotrophs, further expand the PCuAC family, and afford new insight into the biological significance of histidine brace-mediated copper coordination.


Asunto(s)
Oxigenasas/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Sitios de Unión , Cobre/metabolismo , Cristalografía por Rayos X/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Histidina/análogos & derivados , Histidina/química , Histidina/metabolismo , Ligandos , Methylococcaceae/metabolismo , Methylocystaceae/metabolismo , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Compuestos Organometálicos/metabolismo , Dominios Proteicos
14.
J Biol Chem ; 294(44): 16141-16151, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511324

RESUMEN

Methanobactins (Mbns) are ribosomally-produced, post-translationally modified peptidic copper-binding natural products produced under conditions of copper limitation. Genes encoding Mbn biosynthetic and transport proteins have been identified in a wide variety of bacteria, indicating a broader role for Mbns in bacterial metal homeostasis. Many of the genes in the Mbn operons have been assigned functions, but two genes usually present, mbnP and mbnH, encode uncharacterized proteins predicted to reside in the periplasm. MbnH belongs to the bacterial diheme cytochrome c peroxidase (bCcP)/MauG protein family, and MbnP contains no domains of known function. Here, we performed a detailed bioinformatic analysis of both proteins and have biochemically characterized MbnH from Methylosinus (Ms.) trichosporium OB3b. We note that the mbnH and mbnP genes typically co-occur and are located proximal to genes associated with microbial copper homeostasis. Our bioinformatics analysis also revealed that the bCcP/MauG family is significantly more diverse than originally appreciated, and that MbnH is most closely related to the MauG subfamily. A 2.6 Å resolution structure of Ms. trichosporium OB3b MbnH combined with spectroscopic data and peroxidase activity assays provided evidence that MbnH indeed more closely resembles MauG than bCcPs, although its redox properties are significantly different from those of MauG. The overall similarity of MbnH to MauG suggests that MbnH could post-translationally modify a macromolecule, such as internalized CuMbn or its uncharacterized partner protein, MbnP. Our results indicate that MbnH is a MauG-like diheme protein that is likely involved in microbial copper homeostasis and represents a new family within the bCcP/MauG superfamily.


Asunto(s)
Cobre/metabolismo , Imidazoles/metabolismo , Methylosinus trichosporium/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Secuencia de Aminoácidos/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Biología Computacional/métodos , Homeostasis , Oligopéptidos/biosíntesis , Operón/genética , Procesamiento Proteico-Postraduccional
15.
J Biol Chem ; 293(13): 4606-4615, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29348173

RESUMEN

Methanobactins (Mbns) are ribosomally produced, post-translationally modified natural products that bind copper with high affinity and specificity. Originally identified in methanotrophic bacteria, which have a high need for copper, operons encoding these compounds have also been found in many non-methanotrophic bacteria. The proteins responsible for Mbn biosynthesis include several novel enzymes. Mbn transport involves export through a multidrug efflux pump and re-internalization via a TonB-dependent transporter. Release of copper from Mbn and the molecular basis for copper regulation of Mbn production remain to be elucidated. Future work is likely to result in the identification of new enzymatic chemistry, opportunities for bioengineering and drug targeting of copper metabolism, and an expanded understanding of microbial metal homeostasis.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Homeostasis/fisiología , Proteínas de la Membrana/metabolismo , Oligopéptidos/biosíntesis , Transporte Biológico Activo/fisiología , Imidazoles
16.
J Biol Chem ; 293(27): 10457-10465, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29739854

RESUMEN

Particulate methane monooxygenase (pMMO) is a copper-dependent integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. Studies of isolated pMMO have been hindered by loss of enzymatic activity upon its removal from the native membrane. To characterize pMMO in a membrane-like environment, we reconstituted pMMOs from Methylococcus (Mcc.) capsulatus (Bath) and Methylomicrobium (Mm.) alcaliphilum 20Z into bicelles. Reconstitution into bicelles recovers methane oxidation activity lost upon detergent solubilization and purification without substantial alterations to copper content or copper electronic structure, as observed by electron paramagnetic resonance (EPR) spectroscopy. These findings suggest that loss of pMMO activity upon isolation is due to removal from the membranes rather than caused by loss of the catalytic copper ions. A 2.7 Å resolution crystal structure of pMMO from Mm. alcaliphilum 20Z reveals a mononuclear copper center in the PmoB subunit and indicates that the transmembrane PmoC subunit may be conformationally flexible. Finally, results from extended X-ray absorption fine structure (EXAFS) analysis of pMMO from Mm. alcaliphilum 20Z were consistent with the observed monocopper center in the PmoB subunit. These results underscore the importance of studying membrane proteins in a membrane-like environment and provide valuable insight into pMMO function.


Asunto(s)
Membrana Celular/metabolismo , Cobre/metabolismo , Metano/metabolismo , Methylococcus capsulatus/enzimología , Micelas , Oxigenasas/química , Oxigenasas/metabolismo , Membrana Celular/química , Cobre/química , Cristalografía por Rayos X , Metano/química , Methylococcus capsulatus/crecimiento & desarrollo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
17.
J Am Chem Soc ; 141(11): 4678-4686, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30807125

RESUMEN

PmoD, a recently discovered protein from methane-oxidizing bacteria, forms a homodimer with a dicopper CuA center at the dimer interface. Although the optical and electron paramagnetic resonance (EPR) spectroscopic signatures of the PmoD CuA bear similarities to those of canonical CuA sites, there are also some puzzling differences. Here we have characterized the rapid formation (seconds) and slow decay (hours) of this homodimeric CuA site to two mononuclear Cu2+ sites, as well as its electronic and geometric structure, using stopped-flow optical and advanced paramagnetic resonance spectroscopies. PmoD CuA formation occurs rapidly and involves a short-lived intermediate with a λmax of 360 nm. Unlike other CuA sites, the PmoD CuA is unstable, decaying to two type 2 Cu2+ centers. Surprisingly, NMR data indicate that the PmoD CuA has a pure σu* ground state rather than the typical equilibrium between σu* and πu of all other CuA proteins. EPR, ENDOR, ESEEM, and HYSCORE data indicate the presence of two histidine and two cysteine ligands coordinating the CuA core in a highly symmetrical fashion. This report significantly expands the diversity and understanding of known CuA sites.


Asunto(s)
Proteínas Bacterianas/química , Cobre , Electrones , Multimerización de Proteína , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína
18.
Proc Natl Acad Sci U S A ; 113(46): 13027-13032, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807137

RESUMEN

Methanotrophic bacteria use methane, a potent greenhouse gas, as their primary source of carbon and energy. The first step in methane metabolism is its oxidation to methanol. In almost all methanotrophs, this chemically challenging reaction is catalyzed by particulate methane monooxygenase (pMMO), a copper-dependent integral membrane enzyme. Methanotrophs acquire copper (Cu) for pMMO by secreting a small ribosomally produced, posttranslationally modified natural product called methanobactin (Mbn). Mbn chelates Cu with high affinity, and the Cu-loaded form (CuMbn) is reinternalized into the cell via an active transport process. Bioinformatic and gene regulation studies suggest that two proteins might play a role in CuMbn handling: the TonB-dependent transporter MbnT and the periplasmic binding protein MbnE. Disruption of the gene that encodes MbnT abolishes CuMbn uptake, as reported previously, and expression of MbnT in Escherichia coli confers the ability to take up CuMbn. Biophysical studies of MbnT and MbnE reveal specific interactions with CuMbn, and a crystal structure of apo MbnE is consistent with MbnE's proposed role as a periplasmic CuMbn transporter. Notably, MbnT and MbnE exhibit different levels of discrimination between cognate and noncognate CuMbns. These findings provide evidence for CuMbn-protein interactions and begin to elucidate the molecular mechanisms of its recognition and transport.


Asunto(s)
Cobre/metabolismo , Imidazoles/metabolismo , Oligopéptidos/metabolismo , Productos Biológicos/metabolismo , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Oligopéptidos/genética , Oxigenasas/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo
19.
Biochemistry ; 57(25): 3515-3523, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29694778

RESUMEN

Methanobactins (Mbns) are ribosomally produced, post-translationally modified bacterial natural products with a high affinity for copper. MbnN, a pyridoxal 5'-phosphate-dependent aminotransferase, performs a transamination reaction that is the last step in the biosynthesis of Mbns produced by several Methylosinus species. Our bioinformatic analyses indicate that MbnNs likely derive from histidinol-phosphate aminotransferases (HisCs), which play a key role in histidine biosynthesis. A comparison of the HisC active site with the predicted MbnN structure suggests that MbnN's active site is altered to accommodate the larger and more hydrophobic substrates necessary for Mbn biosynthesis. Moreover, we have confirmed that MbnN is capable of catalyzing the final transamination step in Mbn biosynthesis in vitro and in vivo. We also demonstrate that without this final modification, Mbn exhibits significantly decreased stability under physiological conditions. An examination of other Mbns and Mbn operons suggests that N-terminal protection of this family of natural products is of critical importance and that several different means of N-terminal stabilization have evolved independently in Mbn subfamilies.


Asunto(s)
Vías Biosintéticas , Imidazoles/metabolismo , Methylosinus/enzimología , Oligopéptidos/metabolismo , Transaminasas/metabolismo , Dominio Catalítico , Imidazoles/química , Methylosinus/química , Methylosinus/metabolismo , Modelos Moleculares , Oligopéptidos/química , Especificidad por Sustrato , Transaminasas/química
20.
J Biol Inorg Chem ; 23(7): 1037-1047, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30132076

RESUMEN

In methylotrophic bacteria, which use one-carbon (C1) compounds as a carbon source, methanol is oxidized by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) enzymes. Methylotrophic genomes generally encode two distinct MDHs, MxaF and XoxF. MxaF is a well-studied, calcium-dependent heterotetrameric enzyme whereas XoxF is a lanthanide-dependent homodimer. Recent studies suggest that XoxFs are likely the functional MDHs in many environments. In methanotrophs, methylotrophs that utilize methane, interactions between particulate methane monooxygenase (pMMO) and MxaF have been detected. To investigate the possibility of interactions between pMMO and XoxF, XoxF was isolated from the methanotroph Methylomicrobium buryatense 5GB1C (5G-XoxF). Purified 5G-XoxF exhibits a specific activity of 0.16 µmol DCPIP reduced min-1 mg-1. The 1.85 Å resolution crystal structure reveals a La(III) ion in the active site, in contrast to the calcium ion in MxaF. The overall fold is similar to other MDH structures, but 5G-XoxF is a monomer in solution. An interaction between 5G-XoxF and its cognate pMMO was detected by biolayer interferometry, with a KD value of 50 ± 17 µM. These results suggest an alternative model of MDH-pMMO association, in which a XoxF monomer may bind to pMMO, and underscore the potential importance of lanthanide-dependent MDHs in biological methane oxidation.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Elementos de la Serie de los Lantanoides , Methylococcaceae/enzimología , Oxidorreductasas de Alcohol/química , Elementos de la Serie de los Lantanoides/química , Elementos de la Serie de los Lantanoides/metabolismo , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda