Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Hum Mol Genet ; 30(19): 1785-1796, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34059922

RESUMEN

Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing (ES) and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene. USP48 encodes a ubiquitin carboxyl-terminal hydrolase under evolutionary constraint. Pathogenicity of the variants is supported by in vitro assays that showed that the mutated proteins are unable to hydrolyze tetra-ubiquitin. Correspondingly, three-dimensional representation of the protein containing the familial missense variant is situated in a loop that might influence the binding to ubiquitin. Consistent with a contribution of USP48 to auditory function, immunohistology showed that the encoded protein is expressed in the developing human inner ear, specifically in the spiral ganglion neurons, outer sulcus, interdental cells of the spiral limbus, stria vascularis, Reissner's membrane and in the transient Kolliker's organ that is essential for auditory development. Engineered zebrafish knocked-down for usp48, the USP48 ortholog, presented with a delayed development of primary motor neurons, less developed statoacoustic neurons innervating the ears, decreased swimming velocity and circling swimming behavior indicative of vestibular dysfunction and hearing impairment. Corroboratingly, acoustic startle response assays revealed a significant decrease of auditory response of zebrafish lacking usp48 at 600 and 800 Hz wavelengths. In conclusion, we describe a novel autosomal dominant NSHHL gene through a multipronged approach combining ES, animal modeling, immunohistology and molecular assays.


Asunto(s)
Pérdida Auditiva , Pez Cebra , Animales , Pérdida Auditiva/genética , Humanos , Hidrolasas , Reflejo de Sobresalto , Ubiquitina , Proteasas Ubiquitina-Específicas , Pez Cebra/genética
2.
Toxicol Mech Methods ; 32(8): 569-579, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35313786

RESUMEN

Purpose: In recent years, the increase in the biopesticides synthesis for alternative agricultural uses has required their impacts study. Among these compounds, several of them are known to exert endocrinedisrupting (EDs) effects causing deregulation of physiological functions affecting cell signaling pathways involved in neural cell differentiation leading to developmental neurotoxicity. The objective of our study was to determine the impact of the biopesticide A6 structurally related to estrogenic EDs on zebrafish larvae, to define its toxicity, the mechanisms responsible, and to monitor the locomotors activity at nanomolar concentrations (0. 0.5, 5 and 50 nM).Materials and methods: Using imaging analysis tools, immunohistochemistry, quantitative PCR, and an automated behavior recording system (Zebrabox) we were able to assess these effects.Results: We have shown through its blue fluorescence properties that it accumulates in different parts of the body such as the intestine, adipose tissue, muscles, yolk sac and head. A6 also disrupted swimming behavior by affecting the expression of tyrosine hydroxylase (TH) in dopaminergic neurons.Conclusions: In conclusion, our study provided a mechanistic understanding of the A6 neurotoxic effect which could be the result of its binding to the estrogen receptor.


Asunto(s)
Neuroquímica , Plaguicidas , Animales , Expresión Génica , Larva , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924882

RESUMEN

Tauopathies represent a vast family of neurodegenerative diseases, the most well-known of which is Alzheimer's disease. The symptoms observed in patients include cognitive deficits and locomotor problems and can lead ultimately to dementia. The common point found in all these pathologies is the accumulation in neural and/or glial cells of abnormal forms of Tau protein, leading to its aggregation and neurofibrillary tangles. Zebrafish transgenic models have been generated with different overexpression strategies of human Tau protein. These transgenic lines have made it possible to highlight Tau interacting factors or factors which may limit the neurotoxicity induced by mutations and hyperphosphorylation of the Tau protein in neurons. Several studies have tested neuroprotective pharmacological approaches. On few-days-old larvae, modulation of various signaling or degradation pathways reversed the deleterious effects of Tau mutations, mainly hTauP301L and hTauA152T. Live imaging and live tracking techniques as well as behavioral follow-up enable the analysis of the wide range of Tau-related phenotypes from synaptic loss to cognitive functional consequences.


Asunto(s)
Modelos Animales de Enfermedad , Tauopatías , Pez Cebra , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Humanos , Terapia Molecular Dirigida , Proteínas tau/genética
4.
Pharmacol Res ; 158: 104865, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32417505

RESUMEN

Brain-derived neurotrophic factor (BDNF) dysregulations contribute to the neurotoxicity in neurodegenerative pathologies and could be efficiently targeted by therapies. In Alzheimer's disease (AD), although the relationship between BDNF and amyloid load has been extensively studied, how Tau pathology affects BDNF signaling remains unclear. Using the TAU-P301L transgenic zebrafish line, we investigated how early Tau-induced neurotoxicity modifies BDNF signaling. Alterations in BDNF expression levels were observed as early as 48 h post fertilization in TAU-P301L zebrafish embryos while TrkB receptor expression was not affected. Decreasing BDNF expression, using a knockdown strategy in wild-type embryos to mimic Tau-associated decrease, did not modify TrkB expression but promoted neurotoxicity as demonstrated by axonal outgrowth shortening and neuronal cell death. Moreover, the TrkB antagonist ANA-12 reduced the length of axonal projections. Rescue experiments with exogenous BDNF partially corrected neuronal alterations in TAU-P301L by counteracting primary axonal growth impairment but without effect on apoptosis. Importantly, the axonal rescue was proved functionally effective in a behavioral test, at a similar level as obtained with the GSK3ß inhibitor LiCl, known to decrease TAU phosphorylation. Finally, treatment with a TrkB agonist, 7,8-dihydroxyflavone, led to comparable results and allowed full rescue of locomotor response. We provided here strong evidence that Tau neurotoxicity provoked alterations in BDNF system and that BDNF pathway might represent an efficient therapeutic target.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Fármacos Neuroprotectores , Tauopatías/tratamiento farmacológico , Pez Cebra , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/agonistas , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/farmacología , Muerte Celular , Humanos , Larva , Cultivo Primario de Células , Receptor trkB/biosíntesis , Proteínas Recombinantes/farmacología , Tauopatías/genética
5.
Brain Behav Immun ; 80: 697-710, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31100368

RESUMEN

In adult brain, the chemokine CXCL12 and its receptors CXCR4 and CXCR7 are expressed in neural progenitor and glial cells. Conditional Cxcl12 or Cxcr4 gene knockout in mice leads to severe alterations in neural progenitor proliferation, migration and differentiation. As adult hippocampal neurogenesis is involved in learning and memory processes, we investigated the long-term effects of reduced expression of CXCL12 or CXCR7 in heterozygous Cxcl12+/- and Cxcr7+/- animals (KD mice) on hippocampal neurogenesis, neuronal differentiation and memory processing. In Cxcl12 KD mice, Cxcr4 mRNA expression was reduced, whereas Cxcr7 was slightly increased. Conversely, in Cxcr7 KD mice, both Cxcr4 and Cxcl12 mRNA levels were decreased. Moreover, Cxcl12 KD animals showed marked behavioral and learning deficits that were associated with impaired neurogenesis in the hippocampus. Conversely, Cxcr7 KD animals showed mild learning deficits with normal neurogenesis, but reduced cell differentiation, measured with doublecortin immunolabeling. These findings suggested that a single Cxcl12 or Cxcr7 allele might not be sufficient to maintain the hippocampal niche functionality throughout life, and that heterozygosity might represent a susceptibility factor for memory dysfunction progression.


Asunto(s)
Quimiocina CXCL12/metabolismo , Aprendizaje/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Receptores CXCR/metabolismo , Animales , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Quimiocina CXCL12/genética , Quimiocinas/metabolismo , Femenino , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Neuroglía/fisiología , Receptores CXCR/genética , Transducción de Señal
6.
Neurobiol Dis ; 119: 136-148, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30092268

RESUMEN

REG-1α, a secreted protein containing a C-type lectin domain, is expressed in various organs and plays different roles in digestive system cells in physiological and pathological conditions. Like other members of the Reg family, REG-1α is expressed also in the brain where it has different functions. For instance, we previously reported that REG-1α regulates neurite outgrowth and is overexpressed during the very early stages of Alzheimer's disease (AD). However, REG-1α function in neural cells during neural degeneration remains unknown. First, REG-1α and phosphorylated tau expression were assessed in tissue sections from the hippocampus, representing neurofibrillary tangles (NFTs), from patients with AD, and from basal ganglia, representing subcortical NFTs, from patients with progressive supranuclear palsy (PSP). We found an association between REG-1α expression, tau hyperphosphorylation and NFTs in human brain samples from patients with these neurodegenerative diseases. Then, the effects of REG-1α overexpression on tau phosphorylation and axonal morphology were investigated i) in primary cultures of rat neurons that express human tau P301L and ii) in a transgenic zebrafish model of tauopathy that expresses human tau P301L. In the tau P301L cell model, REG-1α overexpression increased tau phosphorylation at the S202/T205 and S396 residues (early and late stages of abnormal phosphorylation, respectively) through the AKT/GSK3-ß pathway. This effect was associated with axonal defects both in tau P301L-expressing rat neurons and zebrafish embryos. Our findings suggest a functional role for REG-1α during tauopathy development and progression and, specifically, its involvement in the modification of tau phosphorylation temporal sequence.


Asunto(s)
Modelos Animales de Enfermedad , Litostatina/biosíntesis , Tauopatías/metabolismo , Proteínas tau/biosíntesis , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Humanos , Litostatina/genética , Masculino , Persona de Mediana Edad , Fosforilación/fisiología , Ratas , Tauopatías/genética , Tauopatías/patología , Pez Cebra , Proteínas tau/genética
7.
Am J Hum Genet ; 97(5): 754-60, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593267

RESUMEN

Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation.


Asunto(s)
Proteínas Portadoras/genética , Fibroblastos/patología , Mitocondrias/patología , Proteínas Mitocondriales/genética , Mutación/genética , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Complejo I de Transporte de Electrón , Femenino , Fibroblastos/metabolismo , Estudios de Seguimiento , Genes Recesivos , Humanos , Masculino , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Degeneración Nerviosa , Linaje , Pronóstico , Células Ganglionares de la Retina/metabolismo , Homología de Secuencia de Aminoácido , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
8.
Neurobiol Learn Mem ; 149: 118-134, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29458097

RESUMEN

The Hamlet test is an innovative device providing a complex environment for testing topographic memory in mice. Animals were trained in groups for weeks in a small village with a central agora, streets expanding from it towards five functionalized houses, where they can drink, eat, hide, run, interact with a stranger mouse. Memory was tested by depriving mice from water or food and analyzing their ability to locate the Drink/Eat house. Exploration and memory were analyzed in different strains, gender, and after different training periods and delays. After 2 weeks training, differences in exploration patterns were observed between strains, but not gender. Neuroanatomical structures activated by training, identified using FosB/ΔFosB immunolabelling, showed an involvement of the hippocampus-subiculum-parahippocampal gyrus axis and dopaminergic structures. Training increased hippocampal neurogenesis (cell proliferation and neuronal maturation) and modified the amnesic efficacy of muscarinic or nicotinic cholinergic antagonists. Moreover, topographical disorientation in Alzheimer's disease was addressed using intracerebroventricular injection of amyloid ß25-35 peptide in trained mice. When retested after 7 days, Aß25-35-treated mice showed memory impairment. The Hamlet test specifically allows analysis of topographical memory in mice, based on complex environment. It offers an innovative tool for various ethological or pharmacological research needs. For instance, it allowed to examine topographical disorientation, a warning sign in Alzheimer's disease.


Asunto(s)
Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Neurogénesis/fisiología , Memoria Espacial/fisiología , Animales , Antagonistas Colinérgicos/farmacología , Femenino , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Antagonistas Muscarínicos/farmacología , Neurogénesis/efectos de los fármacos , Factores Sexuales , Memoria Espacial/efectos de los fármacos , Especificidad de la Especie
9.
Cereb Cortex ; 25(10): 3446-57, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085881

RESUMEN

Cajal-Retzius (CR) cells are essential for cortical development and lamination. These pioneer neurons arise from distinct progenitor sources, including the cortical hem and the ventral pallium at pallium-subpallium boundary (PSB). CXCR4, the canonical receptor for the chemokine CXCL12, controls the superficial location of hem-derived CR cells. However, recent studies showed that CXCR7, a second CXCL12 receptor, is also expressed in CR cells at early developmental stages. We thus investigated the role of CXCR7 during CR cell development using multiple loss-of-function approaches. Cxcr7 gene inactivation led to aberrant localization of Reelin-positive cells within the pallium. In addition, Cxcr7(-/-) mice were characterized by significant accumulation of ectopic CR cells in the lateral part of the dorsal pallium compared with Cxcr4 knockout mice. Loss-of-function approaches, using either gene targeting or pharmacological receptor inhibition, reveal that CXCR7 and CXCR4 act both in CR positioning. Finally, conditional Cxcr7 deletion in cells derived from Dbx1-expressing progenitors indicates an essential role of CXCR7 in controlling the positioning of a subpopulation of PSB-derived CR cells. Our data demonstrate that CXCR7 has a role in the positioning of hem and PSB-derived CR cells, CXCL12 regulating CR cell subpial localization through the combined action of CXCR4 and CXCR7.


Asunto(s)
Movimiento Celular , Corteza Cerebral/embriología , Neuronas/fisiología , Receptores CXCR/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores CXCR4/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo , Transducción de Señal
10.
Int J Pharm ; 641: 123083, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37245740

RESUMEN

Photodynamic therapy (PDT) and photochemical internalization (PCI) are two methods that use light to provoke cell death or disturbance of cellular membranes, respectively, via excitation of a photosensitizer and the formation of reactive oxygen species (ROS). In this context, two-photon excitation (TPE) is of high interest for PCI and/or PDT due to spatiotemporal resolution of two-photon light and deeper penetration of near-infrared light in biological tissues. Here, we report that Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) containing porphyrin groups allow the complexation of pro-apoptotic siRNA. These nano-objects were incubated with MDA-MB-231 breast cancer cells, and TPE-PDT led to significant cell death. Finally, MDA-MB-231 breast cancer cells were pre-incubated with the nanoparticles and then injected in the pericardial cavity of zebrafish embryos. After 24 h, the xenografts were irradiated with femtosecond pulsed laser and the size monitoring by imaging showed a decrease 24 h after irradiation. Pro-apoptotic siRNA was complexed with the nanoparticles and incubation with MDA-MB-231 cells did not lead to cancer cell death in dark conditions, but with two-photon irradiation, TPE-PCI was observed and a synergic effect between pro-apoptotic siRNA and TPE-PDT was noticed, leading to 90% of cancer cell death. Therefore, PMINPs represent an interesting system for nanomedicine applications.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Fotoquimioterapia , Animales , Humanos , Femenino , Pez Cebra , ARN Interferente Pequeño/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias de la Mama/tratamiento farmacológico , Silenciador del Gen , Línea Celular Tumoral
11.
Eur J Hum Genet ; 31(7): 834-840, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37173411

RESUMEN

DFNA68 is a rare subtype of autosomal dominant nonsyndromic hearing impairment caused by heterozygous alterations in the HOMER2 gene. To date, only 5 pathogenic or likely pathogenic coding variants, including two missense substitutions (c.188 C > T and c.587 G > C), a single base pair duplication (c.840dupC) and two short deletions (c.592_597delACCACA and c.832_836delCCTCA) have been described in 5 families. In this study, we report a novel HOMER2 variation, identified by massively parallel sequencing, in a Sicilian family suffering from progressive dominant hearing loss over 3 generations. This novel alteration is a nonstop substitution (c.1064 A > G) that converts the translational termination codon (TAG) of the gene into a tryptophan codon (TGG) and is predicted to extend the HOMER2 protein by 10 amino acids. RNA analyses from the proband suggested that HOMER2 transcripts carrying the nonstop variant escaped the non-stop decay pathway. Finally, in vivo studies using a zebrafish animal model and behavioral tests clearly established the deleterious impact of this novel HOMER2 alteration on hearing function. This study identifies the fourth causal variation responsible for DFNA68 and describes a simple in vivo approach to assess the pathogenicity of candidate HOMER2 variants.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Animales , Codón de Terminación , Sordera/genética , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Linaje , Pez Cebra/genética
12.
Redox Biol ; 58: 102542, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36442393

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons. As a consequence, ALS patients display a locomotor disorder related to muscle weakness and progressive paralysis. Pathological mechanisms that participate in ALS involve deficient unfolded protein response, mitochondrial dysfunction and oxidative stress, among others. Finding a therapeutic target to break the vicious circle is particularly challenging. Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) chaperone that may be one of those targets. We here address and decipher the efficiency of S1R activation on a key ALS gene, TDP43, in zebrafish vertebrate model. While expression of mutant TDP43 (TDP43G348C) led to locomotor defects, treatment with the reference S1R agonist PRE-084 rescued motor performances in a zebrafish model. Treatment with the agonist ameliorated maximal mitochondrial respiration in the TDP43 context. We observed that TDP43G348C exacerbated ER stress induced by tunicamycin, resulting in increased levels of ER stress chaperone BiP and pro-apoptotic factor CHOP. Importantly, PRE-084 treatment in the same condition further heightened BiP levels but also EIF2α/ATF4 and NRF2 signalling cascades, both known to promote antioxidant protection during ER stress. Moreover, we showed that increasing NRF2 levels directly or by sulforaphane treatment rescued locomotor defects of TDP43G348C zebrafish. For the first time, we here provide the proof of concept that PRE-084 prevents mutant TDP43 toxicity by boosting ER stress response and antioxidant cascade through NRF2 signalling.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Pez Cebra/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/uso terapéutico , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico , Receptor Sigma-1
13.
Sci Transl Med ; 14(631): eabh3763, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35138910

RESUMEN

The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.


Asunto(s)
Receptores sigma , Síndrome de Wolfram , Animales , Calcio/metabolismo , Femenino , Humanos , Masculino , Ratones , Receptores sigma/agonistas , Pez Cebra/metabolismo , Receptor Sigma-1
14.
Chromosoma ; 119(3): 267-74, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20094891

RESUMEN

Calpains form a family of Ca(2+)-dependent cysteine proteases involved in diverse cellular processes. However, the specific functions of each calpain isoform remain unknown. Recent reports have shown that calpain 2 (Capn2) is essential for cell viability. We have recently shown that Capn2 is a nuclear protease associated with chromosomes during mitosis in mammalian embryonic cells. We now report that Capn2 depletion impairs mitosis and induces apoptosis in murine cells. Low Capn2 levels induce chromosome alignment defects, the loss of histone H3 threonine 3 phosphorylation at centromeres, and premature sister chromatid separation. Thus, Capn2 may play a role in fundamental mitotic functions, such as the maintenance of sister chromatid cohesion.


Asunto(s)
Calpaína/metabolismo , Mitosis , Intercambio de Cromátides Hermanas , Animales , Apoptosis , Calpaína/genética , Línea Celular , Ratones , Fosforilación
15.
Sci Total Environ ; 770: 145272, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33497902

RESUMEN

The ubiquitous use of ethinylestradiol (EE2), an active constituent of birth control preparations, results in continuous release of this synthetic estrogen to surface waters. Many studies document the untoward effects of EE2 on the endocrine system of aquatic organisms. Effects of environmental EE2 on the nervous system are still poorly documented. We studied effects of pico- to nanomolar concentrations of EE2 on early nervous system development of zebrafish larvae. EE2 disrupted axonal nerve regeneration and hair cell regeneration up to 50%. Gene expression in larval brain tissues showed significantly upregulated expression of target genes, such as estrogen and progesterone receptors, and aromatase B. In contrast, downregulation of the tyrosine hydroxylase, involved in the synthesis of neurotransmitters, occurred concomitant with diminution of proliferating cells. Overall, the size of exposed fish larvae decreased by 25% and their swimming behavior was modified compared to non-treated larvae. EE2 interferes with nervous system development, both centrally and peripherally, with negative effects on regeneration and swimming behavior. Survival of fish and other aquatic species may be at risk in chronically EE2-contaminated environments.


Asunto(s)
Etinilestradiol , Contaminantes Químicos del Agua , Animales , Anticoncepción , Etinilestradiol/toxicidad , Larva , Sistema Nervioso , Natación , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
16.
Front Cell Dev Biol ; 9: 675517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095146

RESUMEN

Retinitis pigmentosa (RP) is one of the most common forms of inherited retinal degeneration with 1/4,000 people being affected. The vision alteration primarily begins with rod photoreceptor degeneration, then the degenerative process continues with cone photoreceptor death. Variants in 71 genes have been linked to RP. One of these genes, PDE6a is responsible for RP43. To date no treatment is available and patients suffer from pronounced visual impairment in early childhood. We used the novel zebrafish pde6aQ70X mutant, generated by N-ethyl-N-nitrosourea at the European Zebrafish Resource Centre, to better understand how PDE6a loss of function leads to photoreceptor alteration. Interestingly, zebrafish pde6aQ70X mutants exhibited impaired visual function at 5 dpf as evidenced by the decrease in their visual motor response (VMR) compared to pde6a WT larvae. This impaired visual function progressed with time and was more severe at 21 dpf. These modifications were associated with an alteration of rod outer segment length at 5 and 21 dpf. In summary, these findings suggest that rod outer segment shrinkage due to Pde6a deficiency begins very early in zebrafish, progresses with time. The zebrafish pde6aQ70X mutant represents an ideal model of RP to screen relevant active small molecules that will block the progression of the disease.

17.
J Mater Chem B ; 9(47): 9670-9683, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34726228

RESUMEN

We investigated a series of Mn2+-Prussian blue (PB) nanoparticles NazMnxFe1-x[Fe(CN)6]1-y□y·nH2O of similar size, surface state and cubic morphology with various amounts of Mn2+ synthesized through a one step self-assembly reaction. We demonstrated by a combined experimental-theoretical approach that during the synthesis, Mn2+ substituted Fe3+ up to a Mn/Na-Mn-Fe ratio of 32 at% in the PB structure, while for higher amounts, the Mn2[Fe(CN)6] analogue is obtained. For comparison, the post-synthetic insertion of Mn2+ in PB nanoparticles was also investigated and completed with Monte-Carlo simulations to probe the plausible adsorption sites. The photothermal conversion efficiency (η) of selected samples was determined and showed a clear dependence on the Mn2+amount with a maximum efficiency for a Mn/Na-Mn-Fe ratio of 10 at% associated with a dependence on the nanoparticle concentration. Evaluation of the in vitro photothermal properties of these nanoparticles performed on triple negative human breast adenocarcinoma (MDA-MB-231) cells by using continuous and pulsed laser irradiation confirm their excellent PTT efficiency permitting low dose use.


Asunto(s)
Antineoplásicos/uso terapéutico , Ferrocianuros/uso terapéutico , Manganeso/química , Nanopartículas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/efectos de la radiación , Línea Celular Tumoral , Ferrocianuros/química , Ferrocianuros/efectos de la radiación , Humanos , Hierro/química , Hierro/efectos de la radiación , Manganeso/efectos de la radiación , Nanopartículas/química , Nanopartículas/efectos de la radiación , Procesos Fotoquímicos , Terapia Fototérmica , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
18.
Mol Cell Neurosci ; 40(4): 474-84, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19340934

RESUMEN

Migration of facial motoneurons in the zebrafish hindbrain depends on SDF1/CXCL12 signaling. Recent studies demonstrated that SDF1 can bind two chemokine receptors, CXCR4 and CXCR7. Here we explore the expression and function of the cxcr7b gene in zebrafish hindbrain development. By the time cxcr4b-expressing motoneurons migrate from rhombomere (r) r4 to r6, expression of cxcr7b is rapidly restricted to the ventral part of r5. Inactivation of either cxcr7b or cxcr4b impairs motoneuron migration, with however different phenotypes. Facial motoneurons preferentially accumulate in r5 in cxcr7b morphant embryos, while they are distributed between r4, r5 and r6 in cxcr4b morphants. Simultaneous inactivation of both receptors leads to yet a third phenotype, with motoneurons mostly distributed between r4 and r5. The latter phenotype resembles that of sdf1a morphant embryos. Double inactivation of sdf1a and cxcr7b indeed did not lead to a complete arrest of migration but rather to a partial rescue of r5 arrest of motoneuron migration. This result is in accordance with the functional hypothesis that SDF1 might interact with CXCR7 and that they have an antagonistic effect within r5. The ectopic expression of a truncated CXCR7 receptor leads to a motoneuron migration defect. Altogether, we show that CXCR7 is required, for proper tangential migration of facial motoneurons, by determining a permissive migration pathway through r5.


Asunto(s)
Movimiento Celular/fisiología , Nervio Facial/citología , Neuronas Motoras/fisiología , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neuronas Motoras/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Receptores CXCR/genética , Receptores CXCR4/genética , Rombencéfalo/citología , Rombencéfalo/embriología , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética
19.
Front Cell Dev Biol ; 8: 681, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903776

RESUMEN

Reg-1α belongs to the Reg family of small, secreted proteins expressed in both pancreas and nervous system. Reg-1α is composed of two domains, an insoluble C-type lectin domain and a short soluble N-terminal peptide, which is released from the molecule upon proteolytic N-terminal processing, although the biological significance of this proteolysis remains unclear. We have previously shown that binding of Reg-1α to its receptor Extl3 stimulates axonal outgrowth. Reg-1α and Extl3 genes are expressed in the developing cortex but their expression decreases in adulthood, pointing to a possible function of this signaling system at the early developmental stages. Here, we demonstrate that recombinant Reg-1α increases migration and differentiation of cultured embryonic rat telencephalic progenitors via the activation of GSK-3ß activity. In vivo overexpression of Reg-1α by in utero electroporation, has a similar effect, favoring premature differentiation of cortical progenitors. Notably, the N-terminal soluble domain, but not the C-type lectin domain, is largely responsible for Reg-1α effects on cortical neuronal differentiation. We thus conclude that Reg-1α via its proteolytically generated N-terminal domain is required for basic development processes.

20.
Int J Dev Biol ; 52(4): 383-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18415939

RESUMEN

Regulation of migration and proliferation by calpain has been shown in various cell types; however, no data are available concerning calpain 2 (capn2) localization in embryonic tissues. Here, we report the expression pattern of capn2 during mouse embryonic development. Expression of the capn2 gene is observed throughout embryonic development. From ES cells and the 8-cell stage to late neurulation stages, CAPN2 is expressed in the cytoplasm and nuclear compartments, with a clear co-localisation with chromatin. Whole-mount in situ hybridization analysis from E8.5 to 14.5 stages indicates high levels of capn2 expression in the nervous system, heart and mesodermal tissues. Up-regulation is maintained during later developmental stages in proliferating cells and in precursor cells involved in muscle (myoblasts) or bone formation (chondrocytes). At later developmental stages, elevated mRNA levels coincided with CAPN2 nuclear localization in these cell types, while differentiated cells maintained cytoplasmic expression. This detailed analysis reveals dynamic expression: nuclear localization was associated either with active cell mitosis in embryonic stem cells and early developmental stages or with precursor cells later during organogenesis. Thus, these data indicate that CAPN2 may represent a key factor in development from the first cell division.


Asunto(s)
Calpaína/genética , Desarrollo Embrionario/genética , Animales , Calpaína/metabolismo , Desarrollo Embrionario/fisiología , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Hibridación in Situ , Ratones , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somitos/metabolismo , Fracciones Subcelulares/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda