Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Genes Dev ; 33(17-18): 1191-1207, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371435

RESUMEN

The vast majority of eukaryotes possess two DNA recombinases: Rad51, which is ubiquitously expressed, and Dmc1, which is meiosis-specific. The evolutionary origins of this two-recombinase system remain poorly understood. Interestingly, Dmc1 can stabilize mismatch-containing base triplets, whereas Rad51 cannot. Here, we demonstrate that this difference can be attributed to three amino acids conserved only within the Dmc1 lineage of the Rad51/RecA family. Chimeric Rad51 mutants harboring Dmc1-specific amino acids gain the ability to stabilize heteroduplex DNA joints with mismatch-containing base triplets, whereas Dmc1 mutants with Rad51-specific amino acids lose this ability. Remarkably, RAD-51 from Caenorhabditis elegans, an organism without Dmc1, has acquired "Dmc1-like" amino acids. Chimeric C. elegans RAD-51 harboring "canonical" Rad51 amino acids gives rise to toxic recombination intermediates, which must be actively dismantled to permit normal meiotic progression. We propose that Dmc1 lineage-specific amino acids involved in the stabilization of heteroduplex DNA joints with mismatch-containing base triplets may contribute to normal meiotic recombination.


Asunto(s)
Aminoácidos/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasas/química , Recombinasas/metabolismo , Recombinación Genética/genética , Aminoácidos/genética , Animales , Disparidad de Par Base , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Mutación , Recombinasa Rad51/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214234

RESUMEN

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Niño , Humanos , Neoplasias Encefálicas/patología , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Glioma/patología , Histonas/genética , Histonas/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
4.
Genes Dev ; 32(17-18): 1242-1251, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30181361

RESUMEN

During homologous recombination, cells must coordinate repair, DNA damage checkpoint signaling, and movement of chromosomal loci to facilitate homology search. In Saccharomyces cerevisiae, increased movement of damaged loci (local mobility) and undamaged loci (global mobility) precedes homolog pairing in mitotic cells. How cells modulate chromosome mobility in response to DNA damage remains unclear. Here, we demonstrate that global chromosome mobility is regulated by the Rad51 recombinase and its mediator, Rad52. Surprisingly, rad51Δ rad52Δ cells display checkpoint-dependent constitutively increased mobility, indicating that a regulatory circuit exists between recombination and checkpoint machineries to govern chromosomal mobility. We found that the requirement for Rad51 in this circuit is distinct from its role in recombination and that interaction with Rad52 is necessary to alleviate inhibition imposed by mediator recruitment to ssDNA. Thus, interplay between recombination factors and the checkpoint restricts increased mobility until recombination proteins are assembled at damaged sites.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Daño del ADN , Recombinación Homóloga , Recombinasa Rad51/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Mutación , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell ; 67(6): 1068-1079.e4, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890334

RESUMEN

Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón de Terminación , Edición Génica/métodos , Silenciador del Gen , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Codón sin Sentido , Biología Computacional , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células HEK293 , Humanos , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Polimorfismo de Longitud del Fragmento de Restricción , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ratas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfección
6.
Cell ; 137(5): 807-10, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19490890

RESUMEN

Double-strand break (DSB) repair is critical for maintaining genomic integrity and requires the processing of the 5' DSB ends. Recent studies have shed light on the mechanism and regulation of DNA end processing during DSB repair by homologous recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Animales , Archaea/metabolismo , Ciclo Celular , Humanos
7.
Nucleic Acids Res ; 47(17): 9144-9159, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350889

RESUMEN

The postreplication repair gene, HLTF, is often amplified and overexpressed in cancer. Here we model HLTF dysregulation through the functionally conserved Saccharomyces cerevisiae ortholog, RAD5. Genetic interaction profiling and landscape enrichment analysis of RAD5 overexpression (RAD5OE) reveals requirements for genes involved in recombination, crossover resolution, and DNA replication. While RAD5OE and rad5Δ both cause cisplatin sensitivity and share many genetic interactions, RAD5OE specifically requires crossover resolving genes and drives recombination in a region of repetitive DNA. Remarkably, RAD5OE induced recombination does not require other post-replication repair pathway members, or the PCNA modification sites involved in regulation of this pathway. Instead, the RAD5OE phenotype depends on a conserved domain necessary for binding 3' DNA ends. Analysis of DNA replication intermediates supports a model in which dysregulated Rad5 causes aberrant template switching at replication forks. The direct effect of Rad5 on replication forks in vivo, increased recombination, and cisplatin sensitivity predicts similar consequences for dysregulated HLTF in cancer.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Cisplatino/farmacología , Intercambio Genético/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/genética , Saccharomyces cerevisiae/genética
8.
Annu Rev Genet ; 44: 393-417, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21047263

RESUMEN

The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.


Asunto(s)
Bacterias/enzimología , Reparación del ADN , RecQ Helicasas/metabolismo , Enfermedad/genética , Inestabilidad Genómica , Humanos , RecQ Helicasas/química , RecQ Helicasas/genética
9.
Nature ; 471(7336): 74-79, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21368826

RESUMEN

Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response. Here we show that HDAC inhibition/ablation specifically counteracts yeast Mec1 (orthologue of human ATR) activation, double-strand-break processing and single-strand-DNA-RFA nucleofilament formation. Moreover, the recombination protein Sae2 (human CtIP) is acetylated and degraded after HDAC inhibition. Two HDACs, Hda1 and Rpd3, and one HAT, Gcn5, have key roles in these processes. We also find that HDAC inhibition triggers Sae2 degradation by promoting autophagy that affects the DNA damage sensitivity of hda1 and rpd3 mutants. Rapamycin, which stimulates autophagy by inhibiting Tor, also causes Sae2 degradation. We propose that Rpd3, Hda1 and Gcn5 control chromosome stability by coordinating the ATR checkpoint and double-strand-break processing with autophagy.


Asunto(s)
Autofagia , Roturas del ADN de Doble Cadena , Histona Desacetilasas/metabolismo , Saccharomyces cerevisiae , Acetilación/efectos de los fármacos , Aminopeptidasas/metabolismo , Autofagia/efectos de los fármacos , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Inestabilidad Cromosómica , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Endodesoxirribonucleasas/metabolismo , Endonucleasas/química , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Histona Acetiltransferasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Valproico/farmacología
10.
EMBO J ; 31(4): 1014-27, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22157747

RESUMEN

Vesicle budding from the endoplasmic reticulum (ER) employs a cycle of GTP binding and hydrolysis to regulate assembly of the COPII coat. We have identified a novel mutation (sec24-m11) in the cargo-binding subunit, Sec24p, that specifically impacts the GTP-dependent generation of vesicles in vitro. Using a high-throughput approach, we defined genetic interactions between sec24-m11 and a variety of trafficking components of the early secretory pathway, including the candidate COPII regulators, Sed4p and Sec16p. We defined a fragment of Sec16p that markedly inhibits the Sec23p- and Sec31p-stimulated GTPase activity of Sar1p, and demonstrated that the Sec24p-m11 mutation diminished this inhibitory activity, likely by perturbing the interaction of Sec24p with Sec16p. The consequence of the heightened GTPase activity when Sec24p-m11 is present is the generation of smaller vesicles, leading to accumulation of ER membranes and more stable ER exit sites. We propose that association of Sec24p with Sec16p creates a novel regulatory complex that retards the GTPase activity of the COPII coat to prevent premature vesicle scission, pointing to a fundamental role for GTP hydrolysis in vesicle release rather than in coat assembly/disassembly.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de la Membrana/química , Microscopía Electrónica , Microscopía Fluorescente , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Técnicas del Sistema de Dos Híbridos
11.
Mol Cell ; 30(1): 73-85, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18406328

RESUMEN

Double-strand breaks (DSBs) are potentially lethal DNA lesions that can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). We show that DSBs induced by ionizing radiation (IR) are efficiently processed for HR and bound by Rfa1 during G1, while endonuclease-induced breaks are recognized by Rfa1 only after the cell enters S phase. This difference is dependent on the DNA end-binding Yku70/Yku80 complex. Cell-cycle regulation is also observed in the DNA damage checkpoint response. Specifically, the 9-1-1 complex is required in G1 cells to recruit the Ddc2 checkpoint protein to damaged DNA, while, upon entry into S phase, the cyclin-dependent kinase Cdc28 and the 9-1-1 complex both serve to recruit Ddc2 to foci. Together, these results demonstrate that the DNA repair machinery distinguishes between different types of damage in G1, which translates into different modes of checkpoint activation in G1 and S/G2 cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , ADN , Fase G1/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genes cdc , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Radiación Ionizante , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Proteína de Replicación A , Fase S/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
PLoS Genet ; 9(1): e1003237, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23357952

RESUMEN

DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template. Physical analyses of sister chromatid recombination (SCR) in 28 selected mutants that increase Rad52 foci and inter-homolog recombination uncovered 8 new genes required for SCR. These include the SUMO/Ub-SUMO protease Wss1, the stress-response proteins Bud27 and Pdr10, the ADA histone acetyl-transferase complex proteins Ahc1 and Ada2, as well as the Hst3 and Hst4 histone deacetylase and the Rtt109 histone acetyl-transferase genes, whose target is histone H3 Lysine 56 (H3K56). Importantly, we use mutations in H3K56 residue to A, R, and Q to reveal that H3K56 acetylation/deacetylation is critical to promote SCR as the major repair mechanism for replication-born DSBs. The same phenotype is observed for a particular class of rad52 alleles, represented by rad52-C180A, with a DSB repair defect but a spontaneous hyper-recombination phenotype. We propose that specific Rad52 residues, as well as the histone H3 acetylation/deacetylation state of chromatin and other specific factors, play an important role in identifying the sister as the choice template for the repair of replication-born DSBs. Our work demonstrates the existence of specific functions to guarantee SCR as the main repair event for replication-born DSBs that can occur by two pathways, one Rad51-dependent and the other Pol32-dependent. A dysfunction can lead to genome instability as manifested by high levels of homolog recombination and DSB accumulation.


Asunto(s)
Acetilación , Recombinasa Rad51 , Proteína Recombinante y Reparadora de ADN Rad52 , Proteínas de Saccharomyces cerevisiae , Intercambio de Cromátides Hermanas/genética , Cromátides/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Inestabilidad Genómica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(18): 7389-94, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589890

RESUMEN

Genome-wide experiments often measure quantitative differences between treated and untreated cells to identify affected strains. For these studies, statistical models are typically used to determine significance cutoffs. We developed a method termed "CLIK" (Cutoff Linked to Interaction Knowledge) that overlays biological knowledge from the interactome on screen results to derive a cutoff. The method takes advantage of the fact that groups of functionally related interacting genes often respond similarly to experimental conditions and, thus, cluster in a ranked list of screen results. We applied CLIK analysis to five screens of the yeast gene disruption library and found that it defined a significance cutoff that differed from traditional statistics. Importantly, verification experiments revealed that the CLIK cutoff correlated with the position in the rank order where the rate of true positives drops off significantly. In addition, the gene sets defined by CLIK analysis often provide further biological perspectives. For example, applying CLIK analysis retrospectively to a screen for cisplatin sensitivity allowed us to identify the importance of the Hrq1 helicase in DNA crosslink repair. Furthermore, we demonstrate the utility of CLIK to determine optimal treatment conditions by analyzing genome-wide screens at multiple rapamycin concentrations. We show that CLIK is an extremely useful tool for evaluating screen quality, determining screen cutoffs, and comparing results between screens. Furthermore, because CLIK uses previously annotated interaction data to determine biologically informed cutoffs, it provides additional insights into screen results, which supplement traditional statistical approaches.


Asunto(s)
Genoma Fúngico/genética , Modelos Estadísticos , Saccharomyces cerevisiae/genética , Cisplatino/farmacología , Humanos , Mutación/genética , Saccharomyces cerevisiae/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
14.
PLoS Genet ; 8(9): e1002960, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028367

RESUMEN

Using a genome-wide screening approach, we have established the genetic requirements for proper telomere structure in Saccharomyces cerevisiae. We uncovered 112 genes, many of which have not previously been implicated in telomere function, that are required to form a fold-back structure at chromosome ends. Among other biological processes, lysine deacetylation, through the Rpd3L, Rpd3S, and Hda1 complexes, emerged as being a critical regulator of telomere structure. The telomeric-bound protein, Rif2, was also found to promote a telomere fold-back through the recruitment of Rpd3L to telomeres. In the absence of Rpd3 function, telomeres have an increased susceptibility to nucleolytic degradation, telomere loss, and the initiation of premature senescence, suggesting that an Rpd3-mediated structure may have protective functions. Together these data reveal that multiple genetic pathways may directly or indirectly impinge on telomere structure, thus broadening the potential targets available to manipulate telomere function.


Asunto(s)
Histona Desacetilasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros , Telómero/genética , Acetilación , Cromatina/genética , Cromosomas/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Lisina/genética , Lisina/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
15.
Genome Res ; 21(3): 477-86, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21173034

RESUMEN

We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast gene-disruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T(722)A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Redes Reguladoras de Genes , Ensayos Analíticos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Camptotecina/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN-Topoisomerasas de Tipo I/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Expresión Génica , Biblioteca Genómica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mutación , Plásmidos/genética , Ploidias , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transformación Genética
16.
Nat Cell Biol ; 9(8): 923-31, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643116

RESUMEN

Homologous recombination (HR) is crucial for maintaining genome integrity by repairing DNA double-strand breaks (DSBs) and rescuing collapsed replication forks. In contrast, uncontrolled HR can lead to chromosome translocations, loss of heterozygosity, and deletion of repetitive sequences. Controlled HR is particularly important for the preservation of repetitive sequences of the ribosomal gene (rDNA) cluster. Here we show that recombinational repair of a DSB in rDNA in Saccharomyces cerevisiae involves the transient relocalization of the lesion to associate with the recombination machinery at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause rDNA hyperrecombination and the excision of extrachromosomal rDNA circles. Our study also suggests a key role of sumoylation for nucleolar dynamics, perhaps in the compartmentalization of nuclear activities.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Ribosomas/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Daño del ADN , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína SUMO-1/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948862

RESUMEN

Single-strand breaks (SSBs) are one of the most common endogenous lesions and have the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate the mechanism of replication fork collapse at SSBs and subsequent repair, we employed Cas9 nickase (nCas9) to generate site and strand-specific nicks in the budding yeast genome. We show that nCas9-induced nicks are converted to mostly double-ended DSBs during S-phase. We find that repair of replication-dependent DSBs requires homologous recombination (HR) and is independent of canonical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister chromatid template, we observe minimal induction of inter-chromosomal HR by nCas9. Using nCas9 and a gRNA to nick either the leading or lagging strand template, we carried out a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs. All the core HR genes were recovered in the screen with both gRNAs, but we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway with only the gRNA targeting the leading strand template. By use of additional gRNAs, we find that the RCNA pathway is especially important to repair a leading strand fork collapse.

18.
J Biol Chem ; 287(22): 18717-29, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493290

RESUMEN

Manganese is an essential trace element, whose intracellular levels need to be carefully regulated. Mn(2+) acts as a cofactor for many enzymes and excess of Mn(2+) is toxic. Alterations in Mn(2+) homeostasis affect metabolic functions and mutations in the human Mn(2+)/Ca(2+) transporter ATP2C1 have been linked to Hailey-Hailey disease. By deletion of the yeast orthologue PMR1 we have studied the impact of Mn(2+) on cell cycle progression and show that an excess of cytosolic Mn(2+) alters S-phase transit, induces transcriptional up-regulation of cell cycle regulators, bypasses the need for S-phase cell cycle checkpoints and predisposes to genomic instability. On the other hand, we find that depletion of the Golgi Mn(2+) pool requires a functional morphology checkpoint to avoid the formation of polyploid cells.


Asunto(s)
Manganeso/metabolismo , Mitosis , Western Blotting , Ciclo Celular , Citometría de Flujo , Inestabilidad Genómica , Homeostasis
19.
EMBO J ; 28(8): 1121-30, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19262568

RESUMEN

Recruitment of the homologous recombination machinery to sites of double-strand breaks is a cell cycle-regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B-type cyclin/CDK1 activity. Induction of the intra-S-phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU-treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra-S-phase checkpoint. We propose that B-type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Cafeína/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN , Inhibidores Enzimáticos/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Hidroxiurea/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
EMBO J ; 28(7): 915-25, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19214189

RESUMEN

Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund-Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation-of-function alleles of SGS1 that suppress the slow growth of top3Delta and rmi1Delta cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild-type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1-D664Delta, unlike sgs1Delta, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication-associated X-shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1-D664Delta allele exhibits increased spontaneous RPA foci, suggesting that the persistent X-structures may contain single-stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.


Asunto(s)
Reparación del ADN/fisiología , Replicación del ADN/fisiología , RecQ Helicasas/fisiología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Microscopía Fluorescente , Mutación , Fenotipo , RecQ Helicasas/genética , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda