Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nature ; 585(7826): 579-583, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939086

RESUMEN

Malaria has had a major effect on the human genome, with many protective polymorphisms-such as the sickle-cell trait-having been selected to high frequencies in malaria-endemic regions1,2. The blood group variant Dantu provides 74% protection against all forms of severe malaria in homozygous individuals3-5, a similar degree of protection to that afforded by the sickle-cell trait and considerably greater than that offered by the best malaria vaccine. Until now, however, the protective mechanism has been unknown. Here we demonstrate the effect of Dantu on the ability of the merozoite form of the malaria parasite Plasmodium falciparum to invade red blood cells (RBCs). We find that Dantu is associated with extensive changes to the repertoire of proteins found on the RBC surface, but, unexpectedly, inhibition of invasion does not correlate with specific RBC-parasite receptor-ligand interactions. By following invasion using video microscopy, we find a strong link between RBC tension and merozoite invasion, and identify a tension threshold above which invasion rarely occurs, even in non-Dantu RBCs. Dantu RBCs have higher average tension than non-Dantu RBCs, meaning that a greater proportion resist invasion. These findings provide both an explanation for the protective effect of Dantu, and fresh insight into why the efficiency of P. falciparum invasion might vary across the heterogenous populations of RBCs found both within and between individuals.


Asunto(s)
Antígenos de Grupos Sanguíneos/genética , Eritrocitos/citología , Eritrocitos/parasitología , Malaria Falciparum/patología , Malaria Falciparum/prevención & control , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Antígenos de Grupos Sanguíneos/clasificación , Antígenos de Grupos Sanguíneos/metabolismo , Niño , Eritrocitos/metabolismo , Eritrocitos/patología , Femenino , Genotipo , Humanos , Kenia , Ligandos , Masculino , Merozoítos/metabolismo , Merozoítos/patogenicidad , Microscopía por Video , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad
2.
PLoS Genet ; 19(9): e1010910, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708213

RESUMEN

Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Humanos , Sistema del Grupo Sanguíneo ABO/genética , Plasmodium falciparum/genética , Estudios de Casos y Controles , Kenia , Genotipo , Malaria Falciparum/genética
3.
Infect Immun ; 92(7): e0001524, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38842304

RESUMEN

Strain-transcending antibodies against virulence-associated subsets of P. falciparum-infected erythrocyte surface antigens could protect children from severe malaria. However, the evidence supporting the existence of such antibodies is incomplete and inconsistent. One subset of surface antigens associated with severe malaria, rosette-mediating Plasmodium falciparum Erythrocyte Membrane Protein one (PfEMP1) variants, cause infected erythrocytes to bind to uninfected erythrocytes to form clusters of cells (rosettes) that contribute to microvascular obstruction and pathology. Here, we tested plasma from 80 individuals living in malaria-endemic regions for IgG recognition of the surface of four P. falciparum rosetting strains using flow cytometry. Broadly reactive plasma samples were then used in antibody elution experiments in which intact IgG was eluted from the surface of infected erythrocytes and transferred to heterologous rosetting strains to look for strain-transcending antibodies. We found that seroprevalence (percentage of positive plasma samples) against allopatric rosetting strains was high in adults (63%-93%) but lower in children (13%-48%). Strain-transcending antibodies were present in nine out of eleven eluted antibody experiments, with six of these recognizing multiple heterologous rosetting parasite strains. One eluate had rosette-disrupting activity against heterologous strains, suggesting PfEMP1 as the likely target of the strain-transcending antibodies. Naturally acquired strain-transcending antibodies to rosetting P. falciparum strains in humans have not been directly demonstrated previously. Their existence suggests that such antibodies could play a role in clinical protection and raises the possibility that conserved epitopes recognized by strain-transcending antibodies could be targeted therapeutically by monoclonal antibodies or vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios , Inmunoglobulina G , Malaria Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/inmunología , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Niño , Adulto , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Preescolar , Adolescente , Proteínas Protozoarias/inmunología , Eritrocitos/parasitología , Eritrocitos/inmunología , Antígenos de Protozoos/inmunología , Femenino , Masculino , Adulto Joven , Persona de Mediana Edad , Estudios Seroepidemiológicos , Formación de Roseta , Citometría de Flujo
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035177

RESUMEN

Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.


Asunto(s)
Adhesión Bacteriana , Complemento C1/metabolismo , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Línea Celular , Secuencia Conservada , Humanos
5.
Proc Natl Acad Sci U S A ; 115(5): 1063-1068, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339517

RESUMEN

Recent advances have identified a new paradigm for cerebral malaria pathogenesis in which endothelial protein C receptor (EPCR) is a major host receptor for sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain and other vital organs. The parasite adhesins that bind EPCR are members of the IE variant surface antigen family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) containing specific adhesion domains called domain cassette (DC) 8 and DC13. The binding interaction site between PfEMP1 and EPCR has been mapped by biophysical and crystallography studies using recombinant proteins. However, studies examining the interaction of native PfEMP1 on the IE surface with EPCR are few. We aimed to study binding to EPCR by IEs expressing DC8 and DC13 PfEMP1 variants whose recombinant proteins have been used in key prior functional and structural studies. IE binding to EPCR immobilized on plastic and on human brain endothelial cells was examined in static and flow adhesion assays. Unexpectedly, we found that IEs expressing the DC13 PfEMP1 variant HB3var03 or IT4var07 did not bind to EPCR on plastic and the binding of these variants to brain endothelial cells was not dependent on EPCR. IEs expressing the DC8 variant IT4var19 did bind to EPCR, but this interaction was inhibited if normal human serum or plasma was present, raising the possibility that IE-EPCR interaction may be prevented by plasma components under physiological conditions. These data highlight a discrepancy in EPCR-binding activity between PfEMP1 recombinant proteins and IEs, and indicate the critical need for further research to understand the pathophysiological significance of the PfEMP1-EPCR interaction.


Asunto(s)
Eritrocitos/parasitología , Malaria Cerebral/parasitología , Malaria Falciparum/parasitología , Oligopéptidos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Adhesión Celular , Línea Celular , Receptor de Proteína C Endotelial/metabolismo , Epítopos/química , Humanos , Microcirculación , Peso Molecular , Unión Proteica , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo
6.
Parasitology ; 147(1): 1-11, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31455446

RESUMEN

Malaria remains a major cause of mortality in African children, with no adjunctive treatments currently available to ameliorate the severe clinical forms of the disease. Rosetting, the adhesion of infected erythrocytes (IEs) to uninfected erythrocytes, is a parasite phenotype strongly associated with severe malaria, and hence is a potential therapeutic target. However, the molecular mechanisms of rosetting are complex and involve multiple distinct receptor-ligand interactions, with some similarities to the diverse pathways involved in P. falciparum erythrocyte invasion. This review summarizes the current understanding of the molecular interactions that lead to rosette formation, with a particular focus on host uninfected erythrocyte receptors including the A and B blood group trisaccharides, complement receptor one, heparan sulphate, glycophorin A and glycophorin C. There is strong evidence supporting blood group A trisaccharides as rosetting receptors, but evidence for other molecules is incomplete and requires further study. It is likely that additional host erythrocyte rosetting receptors remain to be discovered. A rosette-disrupting low anti-coagulant heparin derivative is being investigated as an adjunctive therapy for severe malaria, and further research into the receptor-ligand interactions underlying rosetting may reveal additional therapeutic approaches to reduce the unacceptably high mortality rate of severe malaria.


Asunto(s)
Eritrocitos/metabolismo , Malaria Falciparum/diagnóstico , Adhesión Celular/fisiología , Eritrocitos/parasitología , Humanos , Malaria Falciparum/fisiopatología , Plasmodium falciparum , Formación de Roseta , Trisacáridos/metabolismo
7.
Malar J ; 18(1): 273, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409360

RESUMEN

BACKGROUND: Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS: A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS: Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS: Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.


Asunto(s)
Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/inmunología , Adulto , Niño , Preescolar , Secuencia Conservada , Humanos , Lactante , Persona de Mediana Edad , Estructura Terciaria de Proteína , Adulto Joven
8.
Cell Microbiol ; 17(6): 819-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25482886

RESUMEN

Acquired protection from Plasmodium falciparum malaria takes years to develop, probably reflecting the ability of the parasites to evade immunity. A recent example of this is the binding of the Fc region of IgM to VAR2CSA-type PfEMP1. This interferes with specific IgG recognition and phagocytosis of opsonized infected erythrocytes (IEs) without compromising the placental IE adhesion mediated by this PfEMP1 type. IgM also binds via Fc to several other PfEMP1 proteins, where it has been proposed to facilitate rosetting (binding of uninfected erythrocytes to a central IE). To further dissect the functional role of Fc -mediated IgM binding to PfEMP1, we studied the PfEMP1 protein HB3VAR06, which mediates rosetting and binds IgM. Binding of IgM to this PfEMP1 involved the Fc domains Cµ3-Cµ4 in IgM and the penultimate DBL domain (DBLζ2) at the C-terminus of HB3VAR06. However, IgM binding did not inhibit specific IgG labelling of HB3VAR06 or shield IgG-opsonized IEs from phagocytosis. Instead, IgM was required for rosetting, and each pentameric IgM molecule could bind two HB3VAR06 molecules. Together, our data indicate that the primary function of Fc -mediated IgM binding in rosetting is not to shield IE from specific IgG recognition and phagocytosis as in VAR2CSA-type PfEMP1. Rather, the function appears to be strengthening of IE-erythrocyte interactions. In conclusion, our study provides new evidence on the molecular details and functional significance of rosetting, a long-recognized marker of parasites that cause severe P. falciparum malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Inmunoglobulina M/metabolismo , Plasmodium falciparum/inmunología , Proteínas Protozoarias/metabolismo , Humanos , Fragmentos Fc de Inmunoglobulinas , Unión Proteica
9.
Proc Natl Acad Sci U S A ; 109(26): E1772-81, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22619330

RESUMEN

Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected and unselected parasites was analyzed using a variant surface antigen-supplemented microarray chip. After selection, the most highly and consistently up-regulated genes were a subset of group A-like var genes (HB3var3, 3D7_PFD0020c, ITvar7, and ITvar19) that showed 11- to >100-fold increased transcription levels. These var genes encode P. falciparum erythrocyte membrane protein (PfEMP)1 variants with distinct N-terminal domain types (domain cassette 8 or domain cassette 13). Antibodies to HB3var3 and PFD0020c recognized the surface of live IEs and blocked binding to HBEC-5i, thereby confirming the adhesive function of these variants. The clinical in vivo relevance of the HBEC-selected parasites was supported by significantly higher surface recognition of HBEC-selected parasites compared with unselected parasites by antibodies from young African children suffering cerebral malaria (Mann-Whitney test, P = 0.029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria.


Asunto(s)
Encéfalo/irrigación sanguínea , Endotelio Vascular/parasitología , Plasmodium falciparum/genética , Plasmodium/genética , Proteínas Protozoarias/genética , Animales , Encéfalo/parasitología , Humanos , Ligandos , Transcripción Genética , Transcriptoma , Regulación hacia Arriba
10.
Infect Immun ; 82(3): 949-59, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24343658

RESUMEN

Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 µg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 µM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.


Asunto(s)
Encéfalo/inmunología , Células Endoteliales/inmunología , Eritrocitos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Encéfalo/microbiología , Adhesión Celular/inmunología , Línea Celular , Células Endoteliales/microbiología , Endotelio Vascular/inmunología , Endotelio Vascular/parasitología , Membrana Eritrocítica/inmunología , Membrana Eritrocítica/parasitología , Eritrocitos/parasitología , Humanos , Ligandos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Proteínas de la Membrana/inmunología , Formación de Roseta/métodos
11.
PLoS Pathog ; 8(4): e1002665, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22532802

RESUMEN

Sequence diversity in pathogen antigens is an obstacle to the development of interventions against many infectious diseases. In malaria caused by Plasmodium falciparum, the PfEMP1 family of variant surface antigens encoded by var genes are adhesion molecules that play a pivotal role in malaria pathogenesis and clinical disease. PfEMP1 is a major target of protective immunity, however, development of drugs or vaccines based on PfEMP1 is problematic due to extensive sequence diversity within the PfEMP1 family. Here we identified the PfEMP1 variants transcribed by P. falciparum strains selected for a virulence-associated adhesion phenotype (IgM-positive rosetting). The parasites transcribed a subset of Group A PfEMP1 variants characterised by an unusual PfEMP1 architecture and a distinct N-terminal domain (either DBLα1.5 or DBLα1.8 type). Antibodies raised in rabbits against the N-terminal domains showed functional activity (surface reactivity with live infected erythrocytes (IEs), rosette inhibition and induction of phagocytosis of IEs) down to low concentrations (<10 µg/ml of total IgG) against homologous parasites. Furthermore, the antibodies showed broad cross-reactivity against heterologous parasite strains with the same rosetting phenotype, including clinical isolates from four sub-Saharan African countries that showed surface reactivity with either DBLα1.5 antibodies (variant HB3var6) or DBLα1.8 antibodies (variant TM284var1). These data show that parasites with a virulence-associated adhesion phenotype share IE surface epitopes that can be targeted by strain-transcending antibodies to PfEMP1. The existence of shared surface epitopes amongst functionally similar disease-associated P. falciparum parasite isolates suggests that development of therapeutic interventions to prevent severe malaria is a realistic goal.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , África del Sur del Sahara , Animales , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Humanos , Malaria Falciparum/prevención & control , Masculino , Estructura Terciaria de Proteína , Conejos
12.
Cell Microbiol ; 15(12): 1976-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23957661

RESUMEN

Cytoadhesion of Plasmodium falciparum-infected erythrocytes to host microvasculature is a key virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the infected erythrocyte surface. Although PfEMP1 proteins have extensively diverged under opposing selection pressure to maintain ligand binding while avoiding antibody-mediated detection, recent work has revealed they can be classified into different groups based on chromosome location and domain composition. This grouping reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches and appears to be maintained by gene recombination hierarchies. Inone extreme, a specific PfEMP1 variant is associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of the var gene family, the structure-function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that have been associated with severe childhood malaria.


Asunto(s)
Adhesión Celular/inmunología , Membrana Eritrocítica/parasitología , Malaria Falciparum/sangre , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/inmunología , Variación Antigénica/genética , Variación Antigénica/inmunología , Células Endoteliales/metabolismo , Membrana Eritrocítica/inmunología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Femenino , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Embarazo , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Formación de Roseta
13.
J Infect Dis ; 208(9): 1514-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23901079

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens mediate parasite sequestration and host immune evasion. Reactivity to 21 PfEMP1 fragments on a protein microarray was measured in serum samples from Malian children aged 1-6 years and adults. Seroreactivity to PfEMP1 fragments was higher in adults than in children; intracellular conserved fragments were more widely recognized than were extracellular hypervariable fragments. Over a malaria season, children maintained this differential seroreactivity and recognized additional intracellular PfEMP1 fragments. This approach has the potential to identify conserved, seroreactive extracellular PfEMP1 domains critical for protective immunity to malaria.


Asunto(s)
Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Fragmentos de Péptidos/inmunología , Proteínas Protozoarias/inmunología , Adulto , Anticuerpos Antiprotozoarios/sangre , Estudios de Casos y Controles , Niño , Preescolar , Humanos , Lactante , Malaria Falciparum/sangre , Plasmodium falciparum/inmunología , Análisis por Matrices de Proteínas , Estructura Terciaria de Proteína
14.
Am J Trop Med Hyg ; 110(3): 436-443, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38295409

RESUMEN

Dantu erythrocytes, which express a hybrid glycophorin B/A protein, are protective against severe malaria. Recent studies have shown that Dantu impairs Plasmodium falciparum invasion by increasing erythrocyte membrane tension, but its effects on pathological host-parasite adhesion interactions such as rosetting, the binding of uninfected erythrocytes to P. falciparum-infected erythrocytes, have not been investigated previously. The expression of several putative host rosetting receptors-including glycophorin A (GYPA), glycophorin C (GYPC), complement receptor 1 (CR1), and band 3, which complexes with GYPA to form the Wrightb blood group antigen-are altered on Dantu erythrocytes. Here, we compare receptor expression, and rosetting at both 1 hour and 48 hours after mixing with mature trophozoite-stage Kenyan laboratory-adapted P. falciparum strain 11019 parasites in Dantu and non-Dantu erythrocytes. Dantu erythrocytes showed lower staining for GYPA and CR1, and greater staining for band 3, as observed previously, whereas Wrightb and GYPC staining did not vary significantly. No significant between-genotype differences in rosetting were seen after 1 hour, but the percentage of large rosettes was significantly less in both Dantu heterozygous (mean, 16.4%; standard error of the mean [SEM], 3.2) and homozygous donors (mean, 15.4%; SEM, 1.4) compared with non-Dantu erythrocytes (mean, 32.9%; SEM, 7.1; one-way analysis of variance, P = 0.025) after 48 hours. We also found positive correlations between erythrocyte mean corpuscular volume (MCV), the percentage of large rosettes (Spearman's rs = 0.5970, P = 0.0043), and mean rosette size (rs = 0.5206, P = 0.0155). Impaired rosetting resulting from altered erythrocyte membrane receptor expression and reduced MCV might add to the protective effect of Dantu against severe malaria.


Asunto(s)
Antígenos de Grupos Sanguíneos , Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum , Antígenos de Grupos Sanguíneos/metabolismo , Kenia , Malaria Falciparum/parasitología , Malaria/patología , Eritrocitos/parasitología
15.
PLoS Negl Trop Dis ; 17(7): e0011133, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486920

RESUMEN

Acute febrile illnesses are still a major cause of mortality and morbidity globally, particularly in low to middle income countries. The aim of this study was to determine any possible metabolic commonalities of patients infected with disparate pathogens that cause fever. Three liquid chromatography-mass spectrometry (LC-MS) datasets investigating the metabolic effects of malaria, leishmaniasis and Zika virus infection were used. The retention time (RT) drift between the datasets was determined using landmarks obtained from the internal standards generally used in the quality control of the LC-MS experiments. Fitted Gaussian Process models (GPs) were used to perform a high level correction of the RT drift between the experiments, which was followed by standard peakset alignment between the samples with corrected RTs of the three LC-MS datasets. Statistical analysis, annotation and pathway analysis of the integrated peaksets were subsequently performed. Metabolic dysregulation patterns common across the datasets were identified, with kynurenine pathway being the most affected pathway between all three fever-associated datasets.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Algoritmos , Metabolómica/métodos
16.
mSphere ; 8(5): e0045123, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791774

RESUMEN

Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Preescolar , Receptor de Proteína C Endotelial/metabolismo , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Epítopos , Péptidos
17.
J Immunol ; 184(9): 4597-603, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20410497

RESUMEN

IgM is an ancestral Ab class found in all jawed vertebrates, from sharks to mammals. This ancient ancestry is shared by malaria parasites (genus Plasmodium) that infect all classes of terrestrial vertebrates with whom they coevolved. IgM, the least studied and most enigmatic of the vertebrate Igs, was recently shown to form an intimate relationship with the malaria parasite Plasmodium falciparum. In this article, we discuss how this association might have come about, building on the recently determined structure of the human IgM pentamer, and how this interaction could affect parasite survival, particularly in light of the just-discovered Fc mu R localized to B and T cell surfaces. Because this parasite may exploit an interaction with IgM to limit immune detection, as well as to manipulate the immune response when detected, a better understanding of this association may prove critical for the development of improved vaccines or vaccination strategies.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Evasión Inmune/inmunología , Inmunoglobulina M/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Receptores Fc/metabolismo , Animales , Sitios de Unión de Anticuerpos/genética , Sitios de Unión de Anticuerpos/inmunología , Femenino , Variación Genética/inmunología , Interacciones Huésped-Parásitos/genética , Humanos , Evasión Inmune/genética , Inmunoglobulina M/sangre , Inmunoglobulina M/deficiencia , Malaria Falciparum/prevención & control , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Unión Proteica/genética , Unión Proteica/inmunología , Receptores Fc/sangre , Receptores Fc/fisiología , Transducción de Señal/genética , Transducción de Señal/inmunología
18.
Methods Mol Biol ; 2470: 91-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881341

RESUMEN

Plasmodium falciparum expresses variant surface antigens on the surface of mature infected erythrocytes (IEs) for binding to various receptors on host cells (cytoadhesion) to evade host immunity. This enables IEs to sequester in the microvasculature of different organs and tissues of the host, contributing to different outcomes of disease. The in vitro study of cytoadhesion involves the use of IEs and human endothelial cells or other cell lines that express host cell receptors. To enrich for IE populations that bind to certain cell types or receptors, we describe a method for panning mature pigmented trophozoite IEs on cell lines. The method enables coculturing of IEs with cells of interest and the selection of IEs that cytoadhere for continuous culturing. The method serves as a tool for generating IEs with specific cell or cell receptor adhesion phenotypes to allow detailed studies of cytoadhesion interactions.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Adhesión Celular , Línea Celular , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
19.
Malar J ; 10: 180, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21718533

RESUMEN

BACKGROUND: The cytoadherence of Plasmodium falciparum is thought to be mediated by variant surface antigens (VSA), encoded by var, rif, stevor and pfmc-2tm genes. The last three families have rarely been studied in the context of cytoadherence. As most VSA genes are unique, the variability among sequences has impeded the functional study of VSA across different P. falciparum strains. However, many P. falciparum genomes have recently been sequenced, allowing the development of specific microarray probes for each VSA gene. METHODS: All VSA sequences from the HB3, Dd2 and IT/FCR3 genomes were extracted using HMMer software. Oligonucleotide probes were designed with OligoRankPick and added to the 3D7-based microarray chip. As a proof of concept, IT/R29 parasites were selected for and against rosette formation and the transcriptomes of isogenic rosetting and non-rosetting parasites were compared by microarray. RESULTS: From each parasite strain 50-56 var genes, 125-132 rif genes, 26-33 stevor genes and 3-8 pfmc-2tm genes were identified. Bioinformatic analysis of the new VSA sequences showed that 13 rif genes and five stevor genes were well-conserved across at least three strains (83-100% amino acid identity). The ability of the VSA-supplemented microarray chip to detect cytoadherence-related genes was assessed using P. falciparum clone IT/R29, in which rosetting is known to be mediated by PfEMP1 encoded by ITvar9. Whole transcriptome analysis showed that the most highly up-regulated gene in rosetting parasites was ITvar9 (19 to 429-fold up-regulated over six time points). Only one rif gene (IT4rifA_042) was up-regulated by more than four fold (five fold at 12 hours post-invasion), and no stevor or pfmc-2tm genes were up-regulated by more than two fold. 377 non-VSA genes were differentially expressed by three fold or more in rosetting parasites, although none was as markedly or consistently up-regulated as ITvar9. CONCLUSIONS: Probes for the VSA of newly sequenced P. falciparum strains can be added to the 3D7-based microarray chip, allowing the analysis of the entire transcriptome of multiple strains. For the rosetting clone IT/R29, the striking transcriptional upregulation of ITvar9 was confirmed, and the data did not support the involvement of other VSA families in rosette formation.


Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Superficie/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Plasmodium falciparum/genética , Proteínas de Unión al GTP rho/genética
20.
Elife ; 102021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33648633

RESUMEN

Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.


Asunto(s)
Variación Antigénica , Interacciones Huésped-Patógeno/genética , Malaria Falciparum/inmunología , Plasmodium falciparum/genética , Adulto , Animales , Anopheles/parasitología , Anticuerpos Antiprotozoarios/genética , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Masculino , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda