Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Cell ; 163(3): 746-58, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496612

RESUMEN

A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino-acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity, while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity, while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code.


Asunto(s)
Lectinas de Plantas/química , Lectinas de Plantas/genética , Fármacos Anti-VIH/química , Secuencia de Carbohidratos , Ingeniería Genética , Mitógenos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Musa/química
2.
FASEB J ; 37(12): e23316, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983890

RESUMEN

Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos Alveolares , Ratones , Humanos , Animales , Macrófagos Alveolares/metabolismo , Células Epiteliales Alveolares/metabolismo , Ácido Láctico/metabolismo , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Antiinflamatorios/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo
3.
Chem Soc Rev ; 52(10): 3353-3396, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070256

RESUMEN

This review highlights the recent development in the use of carriers of increasing simplicities and versatile chemical ligation processes leading to synthetic vaccine candidates against tumor-associated carbohydrate antigens (TACAs). After briefly covering their structures, functions, occurrence, and biosynthesis, an overview of common conjugation chemistry is described with an emphasis on the versatile alkenyl glycosides as starting materials toward glycoconjugate syntheses. This is followed by a successive description of the numerous scaffolds and carriers used to progressively improve and simplify glycovaccine formulations. Throughout a systematic investigation of the various architectures involved, a critical description of the basic principles discovered en route to effective immune responses is disclosed wherein it is found that size, shape, densities, and carriers are all key factors involved towards successful vaccines.


Asunto(s)
Vacunas contra el Cáncer , Vacunas contra el Cáncer/química , Antígenos de Carbohidratos Asociados a Tumores/química , Vacunas Sintéticas/química , Glicoconjugados/química , Glicósidos
4.
Molecules ; 29(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398520

RESUMEN

Zeolite NaP1 was found to display the highest affinity for CO2 in preliminary modifications of coal fly ash-derived zeolites (4A, Y, NaP1 and X) by four amines (1,3-diaminopropane, N,N,N',N'-tetramethylethylenediamine, Tris(2-aminoethyl)amine and ethylenediamine). In the second step, different fatty acid loaded NaP1 samples were prepared using palmitic, oleic and lauric acids. CO2 and H2O thermal programmed desorption (TPD) revealed changes in intrinsic basicity and hydrophilic character, expressed in terms of CO2 and H2O retention capacity (CRC and WRC, respectively). Infrared spectroscopy (IR), N2 adsorption-desorption isotherms and scanning electron microscopy allowed for correlating these changes with the type of interactions between the incorporated species and the zeolite surface. The highest CRC values and the lowest CO2 desorption temperatures were registered for NaP1 with the optimum content in palmitic acid (PA) and were explained in terms of the shading effect of surface acidity by the rise of basic Na+-palmitate salt upon cation exchange. The amine/fatty acid combination was found to paradoxically mitigate this beneficial effect of PA incorporation. These results are of great interest because they demonstrate that fatty acid incorporation is an interesting strategy for reversible CO2 capture.

5.
Bioorg Med Chem ; 94: 117480, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37774448

RESUMEN

Galectins, a family of endogenous glycan-binding proteins, play crucial roles in a broad range of physiological and pathological processes. Galectin-1 (Gal-1), a proto-type member of this family, is overexpressed in several cancers and plays critical roles in tumor-immune escape, angiogenesis and metastasis. Thus, generation of high-affinity Gal-1 inhibitors emerges as an attractive therapeutic approach for a wide range of neoplastic conditions. Small-molecule carbohydrate inhibitors based on lactose (Lac) and N-acetyllactosamine (LacNAc) structures have been tested showing different results. In this study, we evaluated Lac- and LacNAc-based compounds with specific chemical modifications at key positions as Gal-1 ligands by competitive solid-phase assays (SPA) and isothermal titration calorimetry (ITC). Both assays showed excellent correlation, highlighting that lactosides bearing bulky aromatic groups at the anomeric carbon and sulfate groups at the O3' position exhibited the highest binding affinities. To dissect the atomistic determinants for preferential affinity of the different tested Gal-1 ligands, molecular docking simulations were conducted and PRODIGY-LIG structure-based method was employed to predict binding affinity in protein-ligand complexes. Notably, calculated binding free energies derived from the molecular docking were in accordance with experimental values determined by SPA and ITC, showing excellent correlation between theoretical and experimental approaches. Moreover, this analysis showed that 3'-O-sulfate groups interact with residues of the Gal-1 subsite B, mainly with Asn33, while the ester groups of the aromatic anomeric group interact with Gly69 and Thr70 at Gal-1 subsite E, extending deeper into the pocket, which could account for the enhanced binding affinity. This study contributes to the rational design of highly optimized Gal-1 inhibitors to be further studied in cancer models and other pathologic conditions.

6.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003653

RESUMEN

This paper consists of a deep analysis and data comparison of the main strategies undertaken for achieving truly reversible capture of carbon dioxide involving optimized gas uptakes while affording weakest retention strength. So far, most strategies failed because the estimated amount of CO2 produced by equivalent energy was higher than that captured. A more viable and sustainable approach in the present context of a persistent fossil fuel-dependent economy should be based on a judicious compromise between effective CO2 capture with lowest energy for adsorbent regeneration. The most relevant example is that of so-called promising technologies based on amino adsorbents which unavoidably require thermal regeneration. In contrast, OH-functionalized adsorbents barely reach satisfactory CO2 uptakes but act as breathing surfaces affording easy gas release even under ambient conditions or in CO2-free atmospheres. Between these two opposite approaches, there should exist smart approaches to tailor CO2 retention strength even at the expense of the gas uptake. Among these, incorporation of zero-valent metal and/or OH-enriched amines or amine-enriched polyol species are probably the most promising. The main findings provided by the literature are herein deeply and systematically analysed for highlighting the main criteria that allow for designing ideal CO2 adsorbent properties.


Asunto(s)
Dióxido de Carbono , Gases , Aminas , Combustibles Fósiles , Tecnología
7.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835132

RESUMEN

Galectins constitute a family of galactose-binding lectins overly expressed in the tumor microenvironment as well as in innate and adaptive immune cells, in inflammatory diseases. Lactose ((ß-D-galactopyranosyl)-(1→4)-ß-D-glucopyranose, Lac) and N-Acetyllactosamine (2-acetamido-2-deoxy-4-O-ß-D-galactopyranosyl-D-glucopyranose, LacNAc) have been widely exploited as ligands for a wide range of galectins, sometimes with modest selectivity. Even though several chemical modifications at single positions of the sugar rings have been applied to these ligands, very few examples combined the simultaneous modifications at key positions known to increase both affinity and selectivity. We report herein combined modifications at the anomeric position, C-2, and O-3' of each of the two sugars, resulting in a 3'-O-sulfated LacNAc analog having a Kd of 14.7 µM against human Gal-3 as measured by isothermal titration calorimetry (ITC). This represents a six-fold increase in affinity when compared to methyl ß-D-lactoside having a Kd of 91 µM. The three best compounds contained sulfate groups at the O-3' position of the galactoside moieties, which were perfectly in line with the observed highly cationic character of the human Gal-3 binding site shown by the co-crystal of one of the best candidates of the LacNAc series.


Asunto(s)
Galectina 3 , Lactosa , Humanos , Galectina 3/química , Galectina 3/farmacología , Galectinas/química , Lactosa/química , Ligandos
8.
Molecules ; 28(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175235

RESUMEN

Catalytic ozonation for the total mineralization of bisphenol-A (BPA) from aqueous solution was investigated in the presence of various silica-based catalysts such as mesoporous silica, acid-activated bentonite (HMt) and montmorillonite-rich materials (Mt) ion-exchanged with Na+ and Fe2+ cations (NaMt and Fe(II)Mt). The effects of the catalyst surface were studied by correlating the hydrophilic character and catalyst dispersion in the aqueous media to the silica content and BPA conversion. To the best of our knowledge, this approach has barely been tackled so far. Acid-activated and iron-free clay catalysts produced complete BPA degradation in short ozonation times. The catalytic activity was found to strongly depend on the hydrophilic character, which, in turn, depends on the Si content. Catalyst interactions with water and BPA appear to promote hydrophobic adsorption in high Si catalysts. These findings are of great importance because they allow tailoring silica-containing catalyst properties for specific features of the waters to be treated.

9.
Chembiochem ; 23(13): e202100327, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34496130

RESUMEN

A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.


Asunto(s)
Ácidos Nucleicos , Azúcares , Carbohidratos/química , Lectinas/metabolismo , Polisacáridos/química
10.
Molecules ; 27(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235039

RESUMEN

An unprecedented route for mitigating the inhibitory effect of lactic acid (LA) on milk fermentation was achieved through lactate adsorption on hydrotalcite (Ht) from simulated lactate extracts. During its regeneration by ozonation, Ht displayed catalytic activity that appeared to increase by addition of montmorillonite (Mt). Changes in the pH, Zeta potential and catalyst particle size during LA ozonation were found to strongly influence LA-LA, LA-catalyst and catalyst-catalyst interactions. The latter determine lactate protonation-deprotonation and clay dispersion in aqueous media. The activity of Mt appears to involve hydrophobic adsorption of non-dissociated LA molecules on silica-rich areas at low pH, and Lewis acid-base and electrostatic interactions at higher pH than the pKa. Hydrotalcite promotes both hydrophobic interaction and anion exchange. Hydrotalcite-smectite mixture was found to enhance clay dispersion and catalytic activity. This research allowed demonstrating that natural clay minerals can act both as adsorbents for LA extract from fermentation broths and as catalysts for adsorbent regeneration. The results obtained herein provide valuable and useful findings for envisaging seed-free milk clotting in dairy technologies.


Asunto(s)
Bentonita , Ozono , Adsorción , Hidróxido de Aluminio , Animales , Bentonita/química , Catálisis , Arcilla/química , Fermentación , Ácido Láctico , Ácidos de Lewis , Hidróxido de Magnesio , Leche , Minerales
11.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360762

RESUMEN

Peptide therapeutics offer numerous advantages in the treatment of diseases and disorders of the central nervous system (CNS). However, they are not without limitations, especially in terms of their pharmacokinetics where their metabolic lability and low blood-brain barrier penetration hinder their application. Targeted nanoparticle delivery systems are being tapped for their ability to improve the delivery of therapeutics into the brain non-invasively. We have developed a family of mannosylated glycoliposome delivery systems for targeted drug delivery applications. Herein, we demonstrate via in vivo distribution studies the potential of these glycoliposomes to improve the utility of CNS active therapeutics using dynantin, a potent and selective dynorphin peptide analogue antagonist of the kappa opioid receptor (KOR). Glycoliposomal entrapment protected dynantin against known rapid metabolic degradation and ultimately improved brain levels of the peptide by approximately 3-3.5-fold. Moreover, we linked this improved brain delivery with improved KOR antagonist activity by way of an approximately 30-40% positive modulation of striatal dopamine levels 20 min after intranasal administration. Overall, the results clearly highlight the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the CNS.


Asunto(s)
Dinorfinas , Péptidos , Receptores Opioides kappa/antagonistas & inhibidores , Cuerpo Estriado/metabolismo , Dopamina , Dinorfinas/química , Dinorfinas/farmacocinética , Dinorfinas/farmacología , Humanos , Liposomas , Péptidos/química , Péptidos/farmacocinética , Péptidos/farmacología
12.
Molecules ; 26(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921945

RESUMEN

Glycodendrimers have attracted considerable interest in the field of dendrimer sciences owing to their plethora of implications in biomedical applications. This is primarily due to the fact that cell surfaces expose a wide range of highly diversified glycan architectures varying by the nature of the sugars, their number, and their natural multiantennary structures. This particular situation has led to cancer cell metastasis, pathogen recognition and adhesion, and immune cell communications that are implicated in vaccine development. The diverse nature and complexity of multivalent carbohydrate-protein interactions have been the impetus toward the syntheses of glycodendrimers. Since their inception in 1993, chemical strategies toward glycodendrimers have constantly evolved into highly sophisticated methodologies. This review constitutes the first part of a series of papers dedicated to the design, synthesis, and biological applications of heterofunctional glycodendrimers. Herein, we highlight the most common synthetic approaches toward these complex molecular architectures and present modern applications in nanomolecular therapeutics and synthetic vaccines.


Asunto(s)
Técnicas de Química Sintética , Dendrímeros/química , Dendrímeros/farmacología , Diseño de Fármacos , Glicoconjugados/química , Glicoconjugados/farmacología , Carbohidratos/química , Dendrímeros/síntesis química , Desarrollo de Medicamentos , Glicoconjugados/síntesis química , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Terapia Molecular Dirigida , Relación Estructura-Actividad
13.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299556

RESUMEN

This brief review highlights systematic progress in the design of synthetic glycolipid (neoglycolipids) analogs evolving from the conventional architectures of natural glycosphingolipids and gangliosides. Given that naturally occurring glycolipids are composed of only one hydrophilic sugar head-group and two hydrophobic lipid tails embedded in the lipid bilayers of the cell membranes, they usually require extraneous lipids (phosphatidylcholine, cholesterol) to confer their stability. In order to obviate the necessity for these additional stabilizing ingredients, recent investigations have merged dendrimer chemistry with that of neoglycolipid syntheses. This singular approach has provided novel glycoarchitectures allowing reconsidering the necessity for the traditional one to two hydrophilic/hydrophobic ratio. An emphasis has been provided in the recent design of modular arborescent neoglycolipid syntheses coined glycodendrimersomes.


Asunto(s)
Glucolípidos/química , Liposomas/química , Animales , Membrana Celular/química , Dendrímeros/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química
14.
Bioconjug Chem ; 31(9): 2060-2071, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32786368

RESUMEN

The goal of nanomedicine is to address specific clinical problems optimally, to fight human diseases, and to find clinical relevance to change clinical practice. Nanomedicine is poised to revolutionize medicine via the development of more precise diagnostic and therapeutic tools. The field of nanomedicine encompasses numerous features and therapeutic disciplines. A plethora of nanomolecular structures have been engineered and developed for therapeutic applications based on their multitasking abilities and the wide functionalization of their core scaffolds and surface groups. Within nanoparticles used for nanomedicine, dendrimers as well polymers have demonstrated strong potential as nanocarriers, therapeutic agents, and imaging contrast agents. In this review, we present and discuss the different criteria and parameters to be addressed to prepare and develop druggable nanoparticles in general and dendrimers in particular. We also describe the major requirements, included in the preclinical and clinical roadmap, for NPs/dendrimers for the preclinical stage to commercialization. Ultimately, we raise the clinical translation of new nanomedicine issues.


Asunto(s)
Medios de Contraste/administración & dosificación , Dendrímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Preparaciones Farmacéuticas/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanotecnología/métodos
15.
Molecules ; 26(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383774

RESUMEN

Vanillin-based lactoside derivatives were synthetized using phase-transfer catalyzed reactions from per-O-acetylated lactosyl bromide. The aldehyde group of the vanillin moiety was then modified to generate a series of related analogs having variable functionalities in the para- position of the aromatic residue. The corresponding unprotected lactosides, obtained by Zemplén transesterification, were regioselectively 3'-O-sulfated using tin chemistry activation followed by treatment with sulfur trioxide-trimethylamine complex (Men3N-SO3). Additional derivatives were also prepared from the vanillin's aldehyde using a Knoevenagel reaction to provide extended α, ß-unsaturated carboxylic acid which was next reduced to the saturated counterpart.


Asunto(s)
Benzaldehídos/química , Galectinas/antagonistas & inhibidores , Glicósidos/química , Sulfatos/química , Benzaldehídos/síntesis química , Benzaldehídos/farmacología , Catálisis , Técnicas de Química Sintética , Galectinas/metabolismo , Glicósidos/síntesis química , Glicósidos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estereoisomerismo , Sulfatos/síntesis química , Sulfatos/farmacología
16.
Acc Chem Res ; 51(11): 2937-2948, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30289687

RESUMEN

Preventing bacterial adhesion to host cells is a provocative and alternative approach to traditional antibiotic treatments given the increasing microbial resistance. A brief overview of common antibiotic treatments is described in light of their respective resistance and remaining susceptibility. This strategy has been seriously considered in the context of adherent-invasive infections in Crohn's disease and urinary tract infections in particular. The adhesions of various pathogenic Escherichia coli strains to host cells are primarily mediated through carbohydrate-protein interactions involving bacterial organelles called fimbriae that can recognize specific glycoconjugate receptors on host cells. Of particular interest are the FimH and PapG fimbriae, which bind to mannosylated glycoproteins and glycolipids of the galabiose series, respectively. Therefore, blocking FimH- and PapG-mediated bacterial adhesion to uroepithelial cells by high-affinity carbohydrate antagonists constitutes a challenging therapeutic target of high interest. This is of particular interest since bacterial adhesion to host cells is a parameter unlikely to be the subject of bacterial mutations without affecting the carbohydrate ligand binding interactions at the basis of the recognition and infection processes. To date, there have been several families of potent FimH antagonists that include natural O-linked as well as unnatural analogues of α-d-mannopyranosides. These observations led to a thorough understanding of the intimate binding site interactions that helped to reveal the so-called "tyrosine gate mechanism" at the origin of the strong necessary interactions with sugar-possessing hydrophobic aglycones. By modification of the aglycones of single monosaccharidic d-mannopyranosides, it was possible to replace the natural complex oligomannoside structure by simpler ones. An appealing and successful series of analogues have been disclosed, including nanomolecular architectures such as dendrimers, polymers, and liposomes. In addition, the data were compared to the above multivalent architectures and confirmed the possibility of working with small sugar candidates. This Account primarily concentrates on the most promising types of FimH inhibitors belonging to the family of α-C-linked mannopyranosides. However, one of the drawbacks associated with C-mannopyranosides has been that they were believed to be in the inverted chair conformation, which is obviously not recognized by the E. coli FimH. To decipher this situation, various synthetic approaches, conformational aspects, and restrictions are discussed using molecular modeling, high-field NMR spectroscopy, and X-ray analysis. These combined techniques pointed to the fact that several α-C-linked mannopyranosides do exist in the required 4C1 chair conformation. Ultimately, recent findings in this growing field of interest culminated in the identification of drug candidates that have reached clinical phase I.


Asunto(s)
Infecciones por Escherichia coli/terapia , Manósidos/química , Adhesinas de Escherichia coli/metabolismo , Animales , Antibacterianos , Antígenos CD , Adhesión Bacteriana/efectos de los fármacos , Moléculas de Adhesión Celular , Farmacorresistencia Bacteriana , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Proteínas Fimbrias/antagonistas & inhibidores , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Proteínas Ligadas a GPI , Humanos , Manósidos/farmacología , Manósidos/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/patología
17.
Chem Rev ; 117(15): 9839-9873, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28682060

RESUMEN

Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.


Asunto(s)
Carbohidratos/química , Carbohidratos/síntesis química , Glicoproteínas/química , Oligonucleótidos/química , Estereoisomerismo
18.
Molecules ; 24(19)2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581627

RESUMEN

A set of three mannopyranoside possessing identical 1,1'-biphenyl glycosidic pharmacophore but different aglyconic atoms were synthesized using either a palladium-catalyzed Heck cross coupling reaction or a metathesis reaction between their corresponding allylic glycoside derivatives. Their X-ray structures, together with their calculated 3D structures, showed strong indicators to explain the observed relative binding abilities against E. coli FimH as measured by a improved surface plasmon resonance (SPR) method. Amongst the O-, C-, and S-linked analogs, the C-linked analog showed the best ability to become a lead candidate as antagonist against uropathogenic E. coli with a Kd of 11.45 nM.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Hexosas/farmacología , Escherichia coli Uropatógena/fisiología , Adhesión Bacteriana/efectos de los fármacos , Conformación de Carbohidratos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hexosas/síntesis química , Hexosas/química , Modelos Moleculares , Resonancia por Plasmón de Superficie , Escherichia coli Uropatógena/efectos de los fármacos
19.
Rapid Commun Mass Spectrom ; 32(17): 1573-1582, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29920820

RESUMEN

RATIONALE: Acetaminophen (APAP) is a well-known analgesic, deemed a very safe over-the-counter medication. However, it is also the main cause of acute liver failure (ALF) in the Western world, via the formation of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), and its covalent attachment to liver proteins. The aim of this study was to develop a sensitive and robust quantitative assay to monitor APAP-protein binding to human serum albumin (HSA) in patient samples. METHODS: A combination of isotope dilution, peptic digestion and solid-phase extraction coupled to liquid chromatography/multiple reaction monitoring (LC/MRM) was employed. An external calibration curve with surrogate modified protein spiked into blank serum was used for absolute quantitation. Samples were analyzed by LC/MRM to measure the modified active site peptide of HSA. The LC/MRM assay was validated and successfully applied to serum samples from patients suffering from APAP-induced ALF. RESULTS: Accuracy ranged from 83.8-113.3%, within-run coefficient of variation (CV) ranged from 0.3-6.9%, and total CVs from 1.6-10.6%. Patient samples ranged from 0.12-3.91 nmol/mL NAPQI-HSA; in-between the assay dynamic range of 0.11-50.13 nmol/mL serum. In vivo median concentrations were found to be 0.62 nmol/mL and 0.91 nmol/mL for non-spontaneous survivors (n = 25) and individuals with irreversible liver damage (n = 10), respectively (p-value = 0.028), demonstrating significant potential as a biomarker for ALF outcome. CONCLUSIONS: A fast and sensitive assay was developed to accurately quantify NAPQI-HSA as a biomarker for APAP-related covalent binding in human serum.


Asunto(s)
Acetaminofén/efectos adversos , Cromatografía Liquida/métodos , Fallo Hepático Agudo/sangre , Albúmina Sérica Humana/análisis , Espectrometría de Masas en Tándem/métodos , Acetaminofén/administración & dosificación , Adulto , Estudios de Cohortes , Femenino , Humanos , Fallo Hepático Agudo/inducido químicamente , Masculino , Persona de Mediana Edad , Unión Proteica , Albúmina Sérica Humana/metabolismo
20.
Molecules ; 23(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060568

RESUMEN

An efficient study of carbohydrate-protein interactions was achieved using multivalent glycodendrimer library. Different dendrimers with varied peripheral sugar densities and linkers provided an arsenal of potential novel therapeutic agents that could be useful for better specific action and greater binding affinities against their cognate protein receptors. Highly effective click chemistry represents the basic method used for the synthesis of mannosylated dendrimers. To this end, we used propargylated scaffolds of varying sugar densities ranging from 2 to 18 for the attachment of azido mannopyranoside derivatives using copper catalyzed click cycloaddition. Mannopyranosides with short and pegylated aglycones were used to evaluate their effects on the kinetics of binding. The mannosylated dendrons were built using varied scaffolds toward the accelerated and combined "onion peel" strategy These carbohydrates have been designed to fight E. coli urinary infections, by inhibiting the formation of bacterial biofilms, thus neutralizing the adhesion of FimH type 1 lectin present at the tip of their fimbriae against the natural multiantennary oligomannosides of uroplakin 1a receptors expressed on uroepithelial tissues. Preliminary DLS studies of the mannosylated dendrimers to cross- link the leguminous lectin Con A used as a model showed their high potency as candidates to fight the E. coli adhesion and biofilm formation.


Asunto(s)
Antibacterianos/síntesis química , Biopelículas/efectos de los fármacos , Dendrímeros/síntesis química , Lectinas/química , Manosa/química , Oligosacáridos/química , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Azidas/química , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Química Clic , Concanavalina A/química , Concanavalina A/metabolismo , Reacción de Cicloadición , Dendrímeros/metabolismo , Dendrímeros/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo , Expresión Génica , Glicosilación , Humanos , Lectinas/metabolismo , Modelos Biológicos , Polietilenglicoles/química , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Uroplaquina Ia/genética , Uroplaquina Ia/metabolismo , Urotelio/efectos de los fármacos , Urotelio/metabolismo , Urotelio/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda