Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 20(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204410

RESUMEN

There are several technologies and techniques available when developing indoor positioning systems (IPS). Recently, the development of positioning systems based on optical signals has aroused great interest, mainly those using visible light from the lighting infrastructure. In this work, we analyze which techniques give better results to lay the foundations for the development of a Visible Light Positioning system (VLP). Working only with a receiver, it is analyzed what the result of determining the position of different emitters is when they emit simultaneously and without any synchronism. The results obtained by Frequency Division Multiple Access (FDMA) (with digital bandpass filters, I/Q demodulation, and FFT) and Code Division Multiple Access (CDMA) are compared. The interference between signals when emitted simultaneously from multiple emitters is analyzed as well as the errors they cause and how these effects can be mitigated. As a result of the research, the advantages and disadvantages using different multiple-access determination techniques are determined. In addition, advantages and disadvantages of using FDMA and CDMA techniques as well as hardware requirements that make one more feasible than the other are presented. The system behavior, in terms of errors, is established using FDMA and different configurations such as: I/Q, RMS, or FFT. The work also determines the error rates that can be obtained with the different FDMA and CDMA configurations, considering different error scenarios and integration time. Synthetic emulations and empirical tests were performed, which concluded that IPS systems based on optical signals and PSD sensors can achieve very high measurement accuracies and a high measurement rate. Obtained positioning errors in a room of 3 m height are less than 1 cm when working in noisy environments.

2.
Sensors (Basel) ; 20(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962138

RESUMEN

Unlike GNSS-based outdoor positioning, there is no technological alternative for Indoor Positioning Systems (IPSs) that generally stands out from the others. In indoor contexts, the measurement technologies and localization strategies to be used depend strongly on the application requirements and are complementary to each other. In this work, we present an optical IPS based on a Position-Sensitive Detector (PSD) and exploiting illumination infrastructure to determine the target position by Angle of Arrival (AoA) measurements. We combine the proposed IPS with different positioning strategies depending on the number of visible emitters (one, two, or more) and available prior or additional information about the scenario and target. The accuracy and precision of the proposal is assessed experimentally for the different strategies in a 2.47 m high space covering approximately 2.2 m2, using high-end geodetic equipment to establish the reference ground truth. When the orientation of the target is known from external measurements, an average positioning error of 8.2 mm is obtained using the signal received from only one emitter. Using simultaneous observations from two emitters, an average positioning error of 9.4 mm is obtained without external information when the target movement is restricted to a plane. Conversely, if four signals are available, an average positioning error of 4.9 cm is demonstrated, yielding the complete 3D pose of the target free of any prior assumption or additional measurements. In all cases, a precision (2σ) better than 5.9 mm is achieved across the complete test space for an integration time of 10 ms. The proposed system represents a prospectively useful alternative for indoor positioning applications requiring fast and reliable cm-level accuracy with moderate cost when smart illumination infrastructure is available in the environment.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda