Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Comput Biol ; 20(5): e1012111, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805554

RESUMEN

The dorsal (DRN) and median (MRN) raphe are important nuclei involved in similar functions, including mood and sleep, but playing distinct roles. These nuclei have a different composition of neuronal types and set of neuronal connections, which among other factors, determine their neuronal dynamics. Most works characterize the neuronal dynamics using classic measures, such as using the average spiking frequency (FR), the coefficient of variation (CV), and action potential duration (APD). In the current study, to refine the characterization of neuronal firing profiles, we examined the neurons within the raphe nuclei. Through the utilization of nonlinear measures, our objective was to discern the redundancy and complementarity of these measures, particularly in comparison with classic methods. To do this, we analyzed the neuronal basal firing profile in both nuclei of urethane-anesthetized rats using the Shannon entropy (Bins Entropy) of the inter-spike intervals, permutation entropy of ordinal patterns (OP Entropy), and Permutation Lempel-Ziv Complexity (PLZC). Firstly, we found that classic (i.e., FR, CV, and APD) and nonlinear measures fail to distinguish between the dynamics of DRN and MRN neurons, except for the OP Entropy. We also found strong relationships between measures, including the CV with FR, CV with Bins entropy, and FR with PLZC, which imply redundant information. However, APD and OP Entropy have either a weak or no relationship with the rest of the measures tested, suggesting that they provide complementary information to the characterization of the neuronal firing profiles. Secondly, we studied how these measures are affected by the oscillatory properties of the firing patterns, including rhythmicity, bursting patterns, and clock-like behavior. We found that all measures are sensitive to rhythmicity, except for the OP Entropy. Overall, our work highlights OP Entropy as a powerful and useful quantity for the characterization of neuronal discharge patterns.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Neuronas , Dinámicas no Lineales , Animales , Ratas , Potenciales de Acción/fisiología , Neuronas/fisiología , Núcleos del Rafe/fisiología , Masculino , Biología Computacional , Ratas Sprague-Dawley
2.
Neuroimage ; 295: 120636, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777219

RESUMEN

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Asunto(s)
Encéfalo , Cognición , Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Cognición/fisiología , Persona de Mediana Edad , Encéfalo/fisiología , Anciano , Adulto Joven , Individualidad , Adolescente , Factores de Edad , Envejecimiento/fisiología
3.
Brain Commun ; 6(1): fcad320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173803

RESUMEN

Genetic associations with macroscopic brain networks can provide insights into healthy and aberrant cortical connectivity in disease. However, associations specific to dynamic functional connectivity in Alzheimer's disease are still largely unexplored. Understanding the association between gene expression in the brain and functional networks may provide useful information about the molecular processes underlying variations in impaired brain function. Given the potential of dynamic functional connectivity to uncover brain states associated with Alzheimer's disease, it is interesting to ask: How does gene expression associated with Alzheimer's disease map onto the dynamic functional brain connectivity? If genetic variants associated with neurodegenerative processes involved in Alzheimer's disease are to be correlated with brain function, it is essential to generate such a map. Here, we investigate how the relation between gene expression in the brain and dynamic functional connectivity arises from nodal interactions, quantified by their role in network centrality (i.e. the drivers of the metastability), and the principal component of genetic co-expression across the brain. Our analyses include genetic variations associated with Alzheimer's disease and also genetic variants expressed within the cholinergic brain pathways. Our findings show that contrasts in metastability of functional networks between Alzheimer's and healthy individuals can in part be explained by the two combinations of genetic co-variations in the brain with the confidence interval between 72% and 92%. The highly central nodes, driving the brain aberrant metastable dynamics in Alzheimer's disease, highly correlate with the magnitude of variations from two combinations of genes expressed in the brain. These nodes include mainly the white matter, parietal and occipital brain regions, each of which (or their combinations) are involved in impaired cognitive function in Alzheimer's disease. In addition, our results provide evidence of the role of genetic associations across brain regions in asymmetric changes in ageing. We validated our findings on the same cohort using alternative brain parcellation methods. This work demonstrates how genetic variations underpin aberrant dynamic functional connectivity in Alzheimer's disease.

4.
Res Sq ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38978575

RESUMEN

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda