Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
PLoS Biol ; 18(11): e3000934, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33141816

RESUMEN

The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes. The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (ΔssrA) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host's response to colonization by the ΔssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the ΔssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont's sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Animales , Decapodiformes/genética , Decapodiformes/inmunología , Decapodiformes/microbiología , Genes Bacterianos , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Mutación , Simbiosis/genética , Simbiosis/inmunología , Simbiosis/fisiología
2.
Proc Natl Acad Sci U S A ; 117(44): 27578-27586, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067391

RESUMEN

The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.


Asunto(s)
Aliivibrio fischeri/metabolismo , Ritmo Circadiano/fisiología , Decapodiformes/fisiología , Interacciones Microbiota-Huesped/fisiología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Animales , Movimiento Celular , Quitina/metabolismo , Decapodiformes/microbiología , Femenino , Hemocitos/metabolismo , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Simbiosis/fisiología
3.
Biophys J ; 121(13): 2653-2662, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398019

RESUMEN

Symbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them toward their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space. The flagellated marine bacterium Vibrio fischeri, which forms a binary symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, must navigate tight physical confinement during colonization, squeezing through a tissue bottleneck constricting to ∼2 µm in width on the way to its eventual home. Using microfluidic in vitro experiments, we discovered that V. fischeri cells alter their behavior upon entry into confined space, straightening their swimming paths and promoting escape from confinement. Using a computational model, we attributed this escape response to two factors: reduced directional fluctuation and a refractory period between reversals. Additional experiments in asymmetric capillary tubes confirmed that V. fischeri quickly escape from confined ends, even when drawn into the ends by chemoattraction. This avoidance was apparent down to a limit of confinement approaching the diameter of the cell itself, resulting in a balance between chemoattraction and evasion of physical confinement. Our findings demonstrate that nontrivial distributions of swimming bacteria can emerge from simple physical gradients in the level of confinement. Tight spaces may serve as an additional, crucial cue for bacteria while they navigate complex environments to enter specific habitats.


Asunto(s)
Espacios Confinados , Natación , Aliivibrio fischeri/fisiología , Animales , Decapodiformes/microbiología , Decapodiformes/fisiología , Simbiosis/fisiología
4.
Proc Natl Acad Sci U S A ; 116(16): 7990-7999, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30833394

RESUMEN

The colonization of an animal's tissues by its microbial partners creates networks of communication across the host's body. We used the natural binary light-organ symbiosis between the squid Euprymna scolopes and its luminous bacterial partner, Vibrio fischeri, to define the impact of colonization on transcriptomic networks in the host. A night-active predator, E. scolopes coordinates the bioluminescence of its symbiont with visual cues from the environment to camouflage against moon and starlight. Like mammals, this symbiosis has a complex developmental program and a strong day/night rhythm. We determined how symbiont colonization impacted gene expression in the light organ itself, as well as in two anatomically remote organs: the eye and gill. While the overall transcriptional signature of light organ and gill were more alike, the impact of symbiosis was most pronounced and similar in light organ and eye, both in juvenile and adult animals. Furthermore, the presence of a symbiosis drove daily rhythms of transcription within all three organs. Finally, a single mutation in V. fischeri-specifically, deletion of the lux operon, which abrogates symbiont luminescence-reduced the symbiosis-dependent transcriptome of the light organ by two-thirds. In addition, while the gills responded similarly to light-organ colonization by either the wild-type or mutant, luminescence was required for all of the colonization-associated transcriptional responses in the juvenile eye. This study defines not only the impact of symbiont colonization on the coordination of animal transcriptomes, but also provides insight into how such changes might impact the behavior and ecology of the host.


Asunto(s)
Aliivibrio fischeri , Ritmo Circadiano , Decapodiformes , Simbiosis , Transcriptoma , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Decapodiformes/genética , Decapodiformes/microbiología , Decapodiformes/fisiología , Expresión Génica , Luminiscencia , Simbiosis/genética , Simbiosis/fisiología , Transcriptoma/genética , Transcriptoma/fisiología
5.
Cell Microbiol ; 22(4): e13177, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32185893

RESUMEN

Extracellular bacterial symbionts communicate biochemically with their hosts to establish niches that foster the partnership. Using quantitative ion microprobe isotopic imaging (nanoscale secondary ion mass spectrometry [NanoSIMS]), we surveyed localization of 15 N-labelled molecules produced by the bacterium Vibrio fischeri within the cells of the symbiotic organ of its host, the Hawaiian bobtail squid, and compared that with either labelled non-specific species or amino acids. In all cases, two areas of the organ's epithelia were significantly more 15 N enriched: (a) surface ciliated cells, where environmental symbionts are recruited, and (b) the organ's crypts, where the symbiont population resides in the host. Label enrichment in all cases was strongest inside host cell nuclei, preferentially in the euchromatin regions and the nucleoli. This permissiveness demonstrated that uptake of biomolecules is a general mechanism of the epithelia, but the specific responses to V. fischeri cells recruited to the organ's surface are due to some property exclusive to this species. Similarly, in the organ's deeper crypts, the host responds to common bacterial products that only the specific symbiont can present in that location. The application of NanoSIMS allows the discovery of such distinct modes of downstream signalling dependent on location within the host and provides a unique opportunity to study the microbiogeographical patterns of symbiotic dialogue.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Microscopía Electrónica , Transducción de Señal , Espectrometría de Masa de Ion Secundario , Simbiosis , Aliivibrio fischeri/ultraestructura , Animales , Interacciones Microbiota-Huesped
6.
Mol Microbiol ; 112(4): 1326-1338, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400167

RESUMEN

Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacterium Vibrio fischeri and the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host-associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology as V. fischeri initiates its symbiotic program. Exposure to host-like pH increased the resistance of V. fischeri to the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to select V. fischeri from the ocean microbiota. Using a forward genetic screen, we identified a homolog of eptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI-MS to verify eptA as an ethanolamine transferase for the lipid-A portion of V. fischeri lipopolysaccharide. We then used a DNA pulldown approach to discover that eptA transcription is activated by the global regulator H-NS. Finally, we revealed that eptA promotes successful squid colonization by V. fischeri, supporting its potential role in initiation of this highly specific symbiosis.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Lipopolisacáridos/metabolismo , Simbiosis/fisiología , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Animales , Decapodiformes/metabolismo , Decapodiformes/microbiología , Concentración de Iones de Hidrógeno
7.
J Exp Biol ; 223(Pt 16)2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32616546

RESUMEN

Associations between animals and microbes affect not only the immediate tissues where they occur, but also the entire host. Metabolomics, the study of small biomolecules generated during metabolic processes, provides a window into how mutualistic interactions shape host biochemistry. The Hawaiian bobtail squid, Euprymna scolopes, is amenable to metabolomic studies of symbiosis because the host can be reared with or without its species-specific symbiont, Vibrio fischeri In addition, unlike many invertebrates, the host squid has a closed circulatory system. This feature allows a direct sampling of the refined collection of metabolites circulating through the body, a focused approach that has been highly successful with mammals. Here, we show that rearing E. scolopes without its natural symbiont significantly affected one-quarter of the more than 100 hemolymph metabolites defined by gas chromatography mass spectrometry analysis. Furthermore, as in mammals, which harbor complex consortia of bacterial symbionts, the metabolite signature oscillated on symbiont-driven daily rhythms and was dependent on the sex of the host. Thus, our results provide evidence that the population of even a single symbiont species can influence host hemolymph biochemistry as a function of symbiotic state, host sex and circadian rhythm.


Asunto(s)
Aliivibrio fischeri , Decapodiformes , Animales , Hawaii , Metaboloma , Simbiosis
8.
Proc Natl Acad Sci U S A ; 114(36): 9510-9516, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28835539

RESUMEN

We show that mucociliary membranes of animal epithelia can create fluid-mechanical microenvironments for the active recruitment of the specific microbiome of the host. In terrestrial vertebrates, these tissues are typically colonized by complex consortia and are inaccessible to observation. Such tissues can be directly examined in aquatic animals, providing valuable opportunities for the analysis of mucociliary activity in relation to bacteria recruitment. Using the squid-vibrio model system, we provide a characterization of the initial engagement of microbial symbionts along ciliated tissues. Specifically, we developed an empirical and theoretical framework to conduct a census of ciliated cell types, create structural maps, and resolve the spatiotemporal flow dynamics. Our multiscale analyses revealed two distinct, highly organized populations of cilia on the host tissues. An array of long cilia ([Formula: see text]25 [Formula: see text]m) with metachronal beat creates a flow that focuses bacteria-sized particles, at the exclusion of larger particles, into sheltered zones; there, a field of randomly beating short cilia ([Formula: see text]10 [Formula: see text]m) mixes the local fluid environment, which contains host biochemical signals known to prime symbionts for colonization. This cilia-mediated process represents a previously unrecognized mechanism for symbiont recruitment. Each mucociliary surface that recruits a microbiome such as the case described here is likely to have system-specific features. However, all mucociliary surfaces are subject to the same physical and biological constraints that are imposed by the fluid environment and the evolutionary conserved structure of cilia. As such, our study promises to provide insight into universal mechanisms that drive the recruitment of symbiotic partners.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Órganos de los Sentidos/citología , Aliivibrio fischeri/genética , Animales , Cilios , Decapodiformes/citología , Epitelio/ultraestructura , Microbiota , Microscopía por Video , Moco , Órganos de los Sentidos/microbiología , Simbiosis
9.
J Bacteriol ; 201(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31331976

RESUMEN

Outer membrane vesicles (OMVs) are continuously produced by Gram-negative bacteria and are increasingly recognized as ubiquitous mediators of bacterial physiology. In particular, OMVs are powerful effectors in interorganismal interactions, driven largely by their molecular contents. These impacts have been studied extensively in bacterial pathogenesis but have not been well documented within the context of mutualism. Here, we examined the proteomic composition of OMVs from the marine bacterium Vibrio fischeri, which forms a specific mutualism with the Hawaiian bobtail squid, Euprymna scolopes We found that V. fischeri upregulates transcription of its major outer membrane protein, OmpU, during growth at an acidic pH, which V. fischeri experiences when it transitions from its environmental reservoir to host tissues. We used comparative genomics and DNA pulldown analyses to search for regulators of ompU and found that differential expression of ompU is governed by the OmpR, H-NS, and ToxR proteins. This transcriptional control combines with nutritional conditions to govern OmpU levels in OMVs. Under a host-encountered acidic pH, V. fischeri OMVs become more potent stimulators of symbiotic host development in an OmpU-dependent manner. Finally, we found that symbiotic development could be stimulated by OMVs containing a homolog of OmpU from the pathogenic species Vibrio cholerae, connecting the role of a well-described virulence factor with a mutualistic element. This work explores the symbiotic effects of OMV variation, identifies regulatory machinery shared between pathogenic and mutualistic bacteria, and provides evidence of the role that OMVs play in animal-bacterium mutualism.IMPORTANCE Beneficial bacteria communicate with their hosts through a variety of means. These communications are often carried out by a combination of molecules that stimulate responses from the host and are necessary for development of the relationship between these organisms. Naturally produced bacterial outer membrane vesicles (OMVs) contain many of those molecules and can stimulate a wide range of responses from recipient organisms. Here, we describe how a marine bacterium, Vibrio fischeri, changes the makeup of its OMVs under conditions that it experiences as it goes from its free-living lifestyle to associating with its natural host, the Hawaiian bobtail squid. This work improves our understanding of how bacteria change their signaling profile as they begin to associate with their beneficial partner animals.


Asunto(s)
Aliivibrio fischeri/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Decapodiformes/microbiología , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Aliivibrio fischeri/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Microbiota-Huesped , Concentración de Iones de Hidrógeno , Simbiosis , Regulación hacia Arriba
10.
Proc Natl Acad Sci U S A ; 113(13): E1917-26, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976588

RESUMEN

Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.


Asunto(s)
Proteínas Bacterianas/química , Flagelos/química , Proteínas Motoras Moleculares/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/química , Campylobacter jejuni/citología , Campylobacter jejuni/genética , Tomografía con Microscopio Electrónico/métodos , Proteínas Motoras Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica , Salmonella/química , Salmonella/citología , Torque , Vibrio/química , Vibrio/citología
11.
J Biol Chem ; 292(24): 10250-10261, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28446608

RESUMEN

Whereas genomes can be rapidly sequenced, the functions of many genes are incompletely or erroneously annotated because of a lack of experimental evidence or prior functional knowledge in sequence databases. To address this weakness, we describe here a model-enabled gene search (MEGS) approach that (i) identifies metabolic functions either missing from an organism's genome annotation or incorrectly assigned to an ORF by using discrepancies between metabolic model predictions and experimental culturing data; (ii) designs functional selection experiments for these specific metabolic functions; and (iii) selects a candidate gene(s) responsible for these functions from a genomic library and directly interrogates this gene's function experimentally. To discover gene functions, MEGS uses genomic functional selections instead of relying on correlations across large experimental datasets or sequence similarity as do other approaches. When applied to the bioluminescent marine bacterium Vibrio fischeri, MEGS successfully identified five genes that are responsible for four metabolic and transport reactions whose absence from a draft metabolic model of V. fischeri caused inaccurate modeling of high-throughput experimental data. This work demonstrates that MEGS provides a rapid and efficient integrated computational and experimental approach for annotating metabolic genes, including those that have previously been uncharacterized or misannotated.


Asunto(s)
Aliivibrio fischeri/genética , Organismos Acuáticos/genética , Proteínas Bacterianas/genética , Sistemas Especialistas , Genómica/métodos , Modelos Genéticos , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/metabolismo , Animales , Acuicultura , Organismos Acuáticos/metabolismo , Proteínas Bacterianas/metabolismo , Simulación por Computador , Decapodiformes/crecimiento & desarrollo , Decapodiformes/microbiología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Biblioteca Genómica , Hawaii , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Océano Pacífico , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Especificidad de la Especie
12.
Proc Natl Acad Sci U S A ; 112(2): 566-71, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25550509

RESUMEN

Glycans have emerged as critical determinants of immune maturation, microbial nutrition, and host health in diverse symbioses. In this study, we asked how cyclic delivery of a single host-derived glycan contributes to the dynamic stability of the mutualism between the squid Euprymna scolopes and its specific, bioluminescent symbiont, Vibrio fischeri. V. fischeri colonizes the crypts of a host organ that is used for behavioral light production. E. scolopes synthesizes the polymeric glycan chitin in macrophage-like immune cells called hemocytes. We show here that, just before dusk, hemocytes migrate from the vasculature into the symbiotic crypts, where they lyse and release particulate chitin, a behavior that is established only in the mature symbiosis. Diel transcriptional rhythms in both partners further indicate that the chitin is provided and metabolized only at night. A V. fischeri mutant defective in chitin catabolism was able to maintain a normal symbiont population level, but only until the symbiotic organ reached maturity (∼ 4 wk after colonization); this result provided a direct link between chitin utilization and symbiont persistence. Finally, catabolism of chitin by the symbionts was also specifically required for a periodic acidification of the adult crypts each night. This acidification, which increases the level of oxygen available to the symbionts, enhances their capacity to produce bioluminescence at night. We propose that other animal hosts may similarly regulate the activities of epithelium-associated microbial communities through the strategic provision of specific nutrients, whose catabolism modulates conditions like pH or anoxia in their symbionts' habitat.


Asunto(s)
Aliivibrio fischeri/metabolismo , Decapodiformes/metabolismo , Decapodiformes/microbiología , Polisacáridos/metabolismo , Simbiosis/fisiología , Aliivibrio fischeri/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Quitina/genética , Quitina/metabolismo , ADN/genética , Oscuridad , Decapodiformes/genética , Genes Bacterianos , Hemocitos/metabolismo , Hexosaminidasas/genética , Hexosaminidasas/metabolismo , Concentración de Iones de Hidrógeno , Luminiscencia , Datos de Secuencia Molecular , Mutación , Oligosacáridos/genética , Oligosacáridos/metabolismo , Simbiosis/genética
13.
Environ Microbiol ; 19(5): 1845-1856, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28152560

RESUMEN

The marine bacterium Vibrio fischeri is the monospecific symbiont of the Hawaiian bobtail squid, Euprymna scolopes, and the establishment of this association involves a number of signaling pathways and transcriptional responses between both partners. We report here the first full RNA-Seq dataset representing host-associated V. fischeri cells from colonized juvenile E. scolopes, as well as comparative transcriptomes under both laboratory and simulated marine planktonic conditions. These data elucidate the broad transcriptional changes that these bacteria undergo during the early stages of symbiotic colonization. We report several previously undescribed and unexpected transcriptional responses within the early stages of this symbiosis, including gene expression patterns consistent with biochemical stresses inside the host, and metabolic patterns distinct from those reported in associations with adult animals. Integration of these transcriptional data with a recently developed metabolic model of V. fischeri provides us with a clearer picture of the metabolic state of symbionts within the juvenile host, including their possible carbon sources. Taken together, these results expand our understanding of the early stages of the squid-vibrio symbiosis, and more generally inform the transcriptional responses underlying the activities of marine microbes during host colonization.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Decapodiformes/microbiología , Simbiosis/fisiología , Animales , Metabolismo Energético/genética , ARN Bacteriano/genética , Transducción de Señal , Transcriptoma/genética
14.
Proc Natl Acad Sci U S A ; 110(9): 3229-36, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23391737

RESUMEN

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other's genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal-bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Asunto(s)
Bacterias/metabolismo , Disciplinas de las Ciencias Biológicas , Animales , Evolución Biológica , Ecosistema , Genoma , Crecimiento y Desarrollo
15.
Nature ; 458(7235): 215-8, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19182778

RESUMEN

Microbial symbioses are essential for the normal development and growth of animals. Often, symbionts must be acquired from the environment during each generation, and identification of the relevant symbiotic partner against a myriad of unwanted relationships is a formidable task. Although examples of this specificity are well-documented, the genetic mechanisms governing it are poorly characterized. Here we show that the two-component sensor kinase RscS is necessary and sufficient for conferring efficient colonization of Euprymna scolopes squid by bioluminescent Vibrio fischeri from the North Pacific Ocean. In the squid symbiont V. fischeri ES114, RscS controls light-organ colonization by inducing the Syp exopolysaccharide, a mediator of biofilm formation during initial infection. A genome-level comparison revealed that rscS, although present in squid symbionts, is absent from the fish symbiont V. fischeri MJ11. We found that heterologous expression of RscS in strain MJ11 conferred the ability to colonize E. scolopes in a manner comparable to that of natural squid isolates. Furthermore, phylogenetic analyses support an important role for rscS in the evolution of the squid symbiosis. Our results demonstrate that a regulatory gene can alter the host range of animal-associated bacteria. We show that, by encoding a regulator and not an effector that interacts directly with the host, a single gene can contribute to the evolution of host specificity by switching 'on' pre-existing capabilities for interaction with animal tissue.


Asunto(s)
Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/genética , Decapodiformes/microbiología , Simbiosis/fisiología , Estructuras Animales/microbiología , Animales , Biopelículas/crecimiento & desarrollo , Datos de Secuencia Molecular , Océano Pacífico , Filogenia , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Simbiosis/genética
16.
Environ Microbiol ; 16(8): 2623-2634, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24191970

RESUMEN

Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type N-acyl L-homoserine (AHL) quorum sensing is common in Gram-negative Proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogues can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.


Asunto(s)
4-Butirolactona/análogos & derivados , Aliivibrio fischeri/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum/genética , Proteínas Represoras/genética , Simbiosis/genética , Transactivadores/genética , Factores de Transcripción/genética , 4-Butirolactona/metabolismo , Aliivibrio fischeri/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Decapodiformes/microbiología , Luminiscencia , Proteínas Represoras/metabolismo , Factores de Tiempo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
17.
Proc Biol Sci ; 281(1785): 20140504, 2014 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-24807261

RESUMEN

We identified and sequenced from the squid Euprymna scolopes two isoforms of haemocyanin that share the common structural/physiological characteristics of haemocyanin from a closely related cephalopod, Sepia officinalis, including a pronounced Bohr effect. We examined the potential roles for haemocyanin in the animal's symbiosis with the luminous bacterium Vibrio fischeri. Our data demonstrate that, as in other cephalopods, the haemocyanin is primarily synthesized in the gills. It transits through the general circulation into other tissues and is exported into crypt spaces that support the bacterial partner, which requires oxygen for its bioluminescence. We showed that the gradient of pH between the circulating haemolymph and the matrix of the crypt spaces in adult squid favours offloading of oxygen from the haemocyanin to the symbionts. Haemocyanin is also localized to the apical surfaces and associated mucus of a juvenile-specific epithelium on which the symbionts gather, and where their specificity is determined during the recruitment into the association. The haemocyanin has an antimicrobial activity, which may be involved in this enrichment of V. fischeri during symbiont initiation. Taken together, these data provide evidence that the haemocyanin plays a role in shaping two stages of the squid-vibrio partnership.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Decapodiformes/fisiología , Hemocianinas/genética , Simbiosis , Aliivibrio fischeri/genética , Secuencia de Aminoácidos , Animales , Hawaii , Hemocianinas/química , Hemocianinas/metabolismo , Inmunohistoquímica , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
18.
Mol Ecol ; 23(6): 1624-1634, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24118200

RESUMEN

Experimental studies of the interaction between host and symbiont in a maturing symbiotic organ have presented a challenge for most animal-bacterial associations. Advances in the rearing of the host squid Euprymna scolopes have enabled us to explore the relationship between a defect in symbiont light production and late-stage development (e.g. symbiont persistence and tissue morphogenesis) by experimental colonization with specific strains of the symbiont Vibrio fischeri. During the first 4 weeks postinoculation of juvenile squid, the population of wild-type V. fischeri increased 100-fold; in contrast, a strain defective in light production (Δlux) colonized normally the first day, but exhibited an exponential decline to undetectable levels over subsequent weeks. Co-colonization of organs by both strains affected neither the trajectory of colonization by wild type nor the decline of Δlux levels. Uninfected animals retained the ability to be colonized for at least 2 weeks posthatch. However, once colonized by the wild-type strain for 5 days, a subsequent experimentally induced loss of the symbionts could not be followed by a successful recolonization, indicating the host's entry into a refractory state. However, animals colonized by the Δlux before the loss of their symbionts were receptive to recolonization. Analyses of animals colonized with either a wild-type or a Δlux strain revealed slight, if any, differences in the developmental regression of the ciliated light-organ tissues that facilitate the colonization process. Thus, some other feature(s) of the Δlux strain's defect also may be responsible for its inability to persist, and its failure to induce a refractory state in the host.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Simbiosis , Estructuras Animales/crecimiento & desarrollo , Estructuras Animales/microbiología , Animales , Decapodiformes/crecimiento & desarrollo , Luz
19.
J Biol Chem ; 287(11): 8515-30, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22247546

RESUMEN

Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.


Asunto(s)
Aliivibrio fischeri/metabolismo , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Decapodiformes/microbiología , Ligasas/metabolismo , Antígenos O/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/patogenicidad , Estructuras Animales/microbiología , Animales , Proteínas Bacterianas/genética , Conformación de Carbohidratos , Ligasas/genética , Antígenos O/genética
20.
Mol Microbiol ; 84(5): 795-806, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22500943

RESUMEN

The bioluminescence emitted by the marine bacterium Vibrio fischeri is a particularly striking result of individual microbial cells co-ordinating a group behaviour. The genes responsible for light production are principally regulated by the LuxR-LuxI quorum-sensing system. In addition to LuxR-LuxI, numerous other genetic elements and environmental conditions control bioluminescence production. Efforts to mathematically model the LuxR-LuxI system are providing insight into the dynamics of this autoinduction behaviour. The Hawaiian squid Euprymna scolopes forms a natural symbiosis with V. fischeri, and utilizes the symbiont-derived bioluminescence for certain nocturnal behaviours, such as counterillumination. Recent work suggests that the tissue with which V. fischeri associates not only can detect bioluminescence but may also use this light to monitor the V. fischeri population.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Regulación Bacteriana de la Expresión Génica , Luminiscencia , Proteínas Luminiscentes/metabolismo , Animales , Decapodiformes/microbiología , Decapodiformes/fisiología , Modelos Teóricos , Percepción de Quorum , Transducción de Señal , Simbiosis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda