RESUMEN
Models of light-matter interactions in quantum electrodynamics typically invoke the dipole approximation1,2, in which atoms are treated as point-like objects when compared to the wavelength of the electromagnetic modes with which they interact. However, when the ratio between the size of the atom and the mode wavelength is increased, the dipole approximation no longer holds and the atom is referred to as a 'giant atom'2,3. So far, experimental studies with solid-state devices in the giant-atom regime have been limited to superconducting qubits that couple to short-wavelength surface acoustic waves4-10, probing the properties of the atom at only a single frequency. Here we use an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations. This system enables tunable atom-waveguide couplings with large on-off ratios3 and a coupling spectrum that can be engineered by the design of the device. We also demonstrate decoherence-free interactions between multiple giant atoms that are mediated by the quasi-continuous spectrum of modes in the waveguide-an effect that is not achievable using small atoms11. These features allow qubits in this architecture to switch between protected and emissive configurations in situ while retaining qubit-qubit interactions, opening up possibilities for high-fidelity quantum simulations and non-classical itinerant photon generation12,13.
RESUMEN
We implement circuit quantum electrodynamics (cQED) with quantum dots in bilayer graphene, a maturing material platform that can host long-lived spin and valley states. Our device combines a high-impedance (Zr ≈ 1 kΩ) superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure. Electric dipole coupling between the subsystems allows the resonator to sense the electric susceptibility of the double quantum dot from which we reconstruct its charge stability diagram. We achieve sensitive and fast detection of the interdot transition with a signal-to-noise ratio of 3.5 within 1 µs integration time. The charge-photon interaction is quantified in the dispersive and resonant regimes by comparing the resonator response to input-output theory, yielding a coupling strength of g/2π = 49.7 MHz. Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
RESUMEN
Arrays of metallic particles patterned on a substrate have emerged as a promising design for on-chip plasmonic lasers. In past examples of such devices, the periodic particles provided feedback at a single resonance wavelength, and organic dye molecules were used as the gain material. Here, we introduce a flexible template-based fabrication method that allows a broader design space for Ag particle-array lasers. Instead of dye molecules, we integrate colloidal quantum dots (QDs), which offer better photostability and wavelength tunability. Our fabrication approach also allows us to easily adjust the refractive index of the substrate and the QD-film thickness. Exploiting these capabilities, we demonstrate not only single-wavelength lasing but dual-wavelength lasing via two distinct strategies. First, by using particle arrays with rectangular lattice symmetries, we obtain feedback from two orthogonal directions. The two output wavelengths from this laser can be selected individually using a linear polarizer. Second, by adjusting the QD-film thickness, we use higher-order transverse waveguide modes in the QD film to obtain dual-wavelength lasing at normal and off-normal angles from a symmetric square array. We thus show that our approach offers various design possibilities to tune the laser output.