Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Gastroenterology ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128638

RESUMEN

BACKGROUND AND AIMS: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T cell interactions in organoid monolayers expressing human MHC class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS: Epithelial MHC class II (MHCII) was determined in active and treated CeD, and in non-immunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without IFN-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T cell co-cultures were incubated with gluten, pre-digested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS: Active CeD patients and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer-T cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T cell activation markers, and the release of IL-2, IFN-γ, and IL-15 in co-culture supernatants. Gluten metabolized by P. aeruginosa, but not the lasB mutant, enhanced CD4+ T cell proliferation and activation. CONCLUSIONS: Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten pre-digestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in CeD patients.

2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G687-G696, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591144

RESUMEN

Tryptophan is an essential amino acid transformed by host and gut microbial enzymes into metabolites that regulate mucosal homeostasis through aryl hydrocarbon receptor (AhR) activation. Alteration of tryptophan metabolism has been associated with chronic inflammation; however, whether tryptophan supplementation affects the metabolite repertoire and AhR activation under physiological conditions in humans is unknown. We performed a randomized, double blind, placebo-controlled, crossover study in 20 healthy volunteers. Subjects on a low tryptophan background diet were randomly assigned to a 3-wk l-tryptophan supplementation (3 g/day) or placebo, and after a 2-wk washout switched to opposite interventions. We assessed gastrointestinal and psychological symptoms by validated questionnaires, AhR activation by cell reporter assay, tryptophan metabolites by liquid chromatography and high-resolution mass spectrometry, cytokine production in isolated monocytes by ELISA, and microbiota profile by 16S rRNA Illumina technique. Oral tryptophan supplementation was well tolerated, with no changes in gastrointestinal or psychological scores. Compared with placebo, tryptophan increased AhR activation capacity by duodenal contents, but not by feces. This was paralleled by higher urinary and plasma kynurenine metabolites and indoles. Tryptophan had a modest impact on fecal microbiome profiles and no significant effect on cytokine production. At the doses used in this study, oral tryptophan supplementation in humans induces microbial indole and host kynurenine metabolic pathways in the small intestine, known to be immunomodulatory. The results should prompt tryptophan intervention strategies in inflammatory conditions of the small intestine where the AhR pathway is impaired.NEW & NOTEWORTHY We demonstrate that in healthy subjects, orally administered tryptophan activates microbial indole and host kynurenine pathways in the small intestine, the primary metabolic site for dietary components, and the richest source of immune cells along the gut. This study provides novel insights in how to optimally activate immunomodulatory AhR pathways and indole metabolism in the small intestine, serving as basis for future therapeutic trials using l-tryptophan supplementation in chronic inflammatory conditions affecting the small intestine.


Asunto(s)
Estudios Cruzados , Duodeno , Voluntarios Sanos , Receptores de Hidrocarburo de Aril , Triptófano , Humanos , Triptófano/metabolismo , Triptófano/administración & dosificación , Receptores de Hidrocarburo de Aril/metabolismo , Masculino , Adulto , Femenino , Duodeno/metabolismo , Duodeno/efectos de los fármacos , Método Doble Ciego , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Adulto Joven , Administración Oral , Quinurenina/metabolismo , Citocinas/metabolismo , Heces/microbiología , Heces/química , Indoles/farmacología , Indoles/administración & dosificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda