Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Ren Nutr ; 29(1): 55-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30100156

RESUMEN

OBJECTIVE: Toxic metabolites produced by the intestinal microbiome from animal proteins, carnitine (mainly from red meat), or phosphatidylcholine (mainly from egg yolk), have important adverse effects on cardiovascular disease. These are renally eliminated and may be termed gut-derived uremic toxins (GDUT). We hypothesized that even moderate renal impairment and intake of nutrient precursors would raise plasma levels of GDUT. DESIGN: A cohort study. SETTING: Academic medical center. SUBJECTS: Patients attending stroke prevention clinics at a university medical center were recruited. MAIN OUTCOME MEASURE: Nutrient intake was assessed by the 131-item Harvard Food Frequency Questionnaire; estimated glomerular filtration rate (eGFR) was caculated using the Chronic Kidney Disease-Epidemiology (EPI) equations. Plasma levels of trimethylamine n-oxide, p-cresyl sulfate, hippuric acid, p-cresyl glucuronide, pheny acetyl glutamine, and phenyl sulfate were measured by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. RESULTS: Among 316 patients recruited, the mean (standard deviation [SD]) age was 66.74 (10.42) years; 59.7% were men. Mean eGFR was 76.03 ± 20.01; 57 (18%) had eGFR<60 mL/min/1.73 m2. Plasma levels of all GDUT were significantly higher even with moderate reduction of eGFR. Nutrient intake affected plasma levels of some GDUT; the effects differed by eGFR above and below 60 mL/min/1.73 m2. Plasma levels were obtained fasting, so we probably underestimated the effect of nutrient intake. CONCLUSIONS: Even moderate impairment of renal function was associated with higher plasma levels of GDUT. This has dietary implications for patients at risk of atherosclerosis, particularly in those with impaired renal function (including the elderly): they should limit intake of animal protein, red meat, and egg yolk. It also points the way to novel approaches to vascular prevention, including more intensive dialysis, renal transplantation, and modification of the intestinal microbiome with probiotics or fecal transplantation.


Asunto(s)
Dieta/métodos , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Insuficiencia Renal/sangre , Insuficiencia Renal/fisiopatología , Toxinas Biológicas/sangre , Anciano , Cromatografía Liquida , Estudios de Cohortes , Cresoles/sangre , Femenino , Tracto Gastrointestinal/microbiología , Glucurónidos/sangre , Hipuratos/sangre , Humanos , Riñón/fisiopatología , Masculino , Espectrometría de Masas , Metilaminas/sangre , Ésteres del Ácido Sulfúrico/sangre
2.
Reprod Sci ; 27(11): 2038-2051, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542540

RESUMEN

Obesity is associated with altered fatty acid profiles, reduced fertility, and assisted reproductive technology (ART) success. The effects of palmitic acid (PA), oleic acid (OA), and their combination on mouse preimplantation development, endoplasmic reticulum (ER) stress pathway gene expression, lipid droplet formation, and mitochondrial reactive oxygen species (ROS) were characterized. Two-cell stage mouse embryos collected from superovulated and mated CD1 females were placed into culture with KSOMaa medium, or PA alone or in combination with OA for 46 h. PA significantly reduced blastocyst development in a concentration-dependent manner, which was prevented by co-treatment with OA. PA and OA levels in mouse reproductive tracts were assessed by liquid chromatography coupled to mass spectrometry (LC-MS). LC-MS indicated higher concentrations of PA in the mouse oviduct than the uterus. Transcript analysis revealed that PA alone groups had increased ER stress pathway (ATF3, CHOP, and XBP1 splicing) mRNAs, which was alleviated by OA co-treatment. OA co-treatment significantly increased lipid droplet accumulation and significantly decreased mitochondrial ROS from PA treatment alone. PA treatment for only 24 h significantly reduced its impact on blastocyst development from the 2-cell stage. Thus, PA affects ER stress pathway gene expression, lipid droplet accumulation, and mitochondrial ROS in treated preimplantation embryos. These mechanisms may serve to offset free fatty acid exposure effects on preimplantation development, but their protective ability may be overwhelmed by elevated PA.


Asunto(s)
Blastocisto/metabolismo , Desarrollo Embrionario/fisiología , Fertilidad/fisiología , Obesidad/metabolismo , Ácido Oléico/metabolismo , Ácido Palmítico/metabolismo , Animales , Blastocisto/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Femenino , Fertilidad/efectos de los fármacos , Ratones , Obesidad/complicaciones , Ácido Oléico/administración & dosificación , Oviductos/metabolismo , Ácido Palmítico/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Útero/metabolismo
3.
Nutrients ; 10(6)2018 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914158

RESUMEN

Metabolic products of the intestinal microbiome such as trimethylamine N-oxide (TMAO) that accumulate in renal failure (gut-derived uremic toxins, GDUTs) affect atherosclerosis and increase cardiovascular risk. We hypothesized that patients on a Mediterranean diet and those consuming lower amounts of dietary precursors would have lower levels of GDUTs. Patients attending vascular prevention clinics completed a Harvard Food Frequency Questionnaire (FFQ) and had plasma levels of TMAO, p-cresylsulfate, hippuric acid, indoxyl sulfate, p-cresyl glucuronide, phenyl acetyl glutamine, and phenyl sulfate measured by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Carotid plaque burden was measured by ultrasound; CKD-Epi equations were used to estimate the glomerular filtration rate. In total, 276 patients completed the study. Even moderate renal function significantly increased plasma GDUTs, which were significantly associated with higher carotid plaque burden. There was no significant difference in plasma levels of any GDUT associated with a Mediterranean diet score or with intake of dietary precursors. In omnivorous patients with vascular disease, the intake of dietary precursors of intestinal metabolites or adherence to a Mediterranean diet did not change plasma GDUT. Approaches other than diet, such as probiotics and repopulation of the intestinal microbiome, may be required to mitigate the adverse effects of GDUTs.


Asunto(s)
Arterias Carótidas/patología , Dieta Mediterránea , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/microbiología , Riñón/fisiología , Placa Aterosclerótica/patología , Adulto , Anciano , Anciano de 80 o más Años , Registros de Dieta , Femenino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana Edad
4.
Atherosclerosis ; 273: 91-97, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29702430

RESUMEN

BACKGROUND AND AIMS: There is increasing awareness that the intestinal microbiome plays an important role in human health. We investigated its role in the burden of carotid atherosclerosis, measured by ultrasound as total plaque area. METHODS: Multiple regression with traditional risk factors was used to identify three phenotypes among 316/3056 patients attending vascular prevention clinics. Residual score (RES; i.e. the distance off the regression line, similar to standard deviation) was used to identify the 5% of patients with much less plaque than predicted by their risk factors (Protected, RES <-2), the 90% with about as much plaque as predicted (Explained, RES -2 to 2), and the 5% with much more plaque than predicted (Unexplained RES >2). Metabolic products of the intestinal microbiome that accumulate in renal failure - gut-derived uremic toxins (GDUT) - were assayed in plasma by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. RESULTS: Plasma levels of trimethylamine n-oxide (TMAO), p-cresyl sulfate, p-cresyl glucuronide, and phenylacetylglutamine were significantly lower among patients with the Protected phenotype, and higher in those with the Unexplained phenotype, despite no significant differences in renal function or in dietary intake of nutrient precursors of GDUT. In linear multiple regression with a broad panel of risk factors, TMAO (p = 0.011) and p-cresyl sulfate (p = 0.011) were significant independent predictors of carotid plaque burden. CONCLUSIONS: The intestinal microbiome appears to play an important role in atherosclerosis. These findings raise the possibility of novel approaches to treatment of atherosclerosis such as fecal transplantation and probiotics.


Asunto(s)
Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/microbiología , Microbioma Gastrointestinal , Anciano , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Femenino , Humanos , Masculino , Índice de Severidad de la Enfermedad , Ultrasonografía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda