Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 24(4)2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30791506

RESUMEN

Adsorption of Li and Na on pristine and defective graphene and graphene oxide (GO) is studied using density functional theory (DFT) structural and electronic calculations, quantum theory of atoms in molecules (QTAIM), and electron localization function (ELF) analyses. DFT calculations show that Li and Na adsorptions on pristine graphene are not stable at all metal coverages examined here. However, the presence of defects on graphene support stabilizes both Li and Na adsorptions. Increased Li and Na coverages cause metal nucleation and weaken adsorption. Defective graphene is associated with the presence of band gaps and, thus, Li and Na adsorptions can be used to tune these gaps. Electronic calculations show that Li⁻ and Na⁻graphene interactions are Coulombic: as Li and Na coverages increase, the metal valences partially hybridize with the graphene bands and weaken metal⁻graphene support interactions. However, for Li adsorption on single vacancy graphene, QTAIM, ELF, and overlap populations calculations show that the Li-C bond has some covalent character. The Li and Na adsorptions on GO are significantly stronger than on graphene and strengthen upon increased coverages. This is due to Li and Na forming bonds with both carbon and oxygen GO atoms. QTAIM and ELF are used to analyze the metal⁻C and metal⁻metal bonds (when metal nucleation is present). The Li and Na clusters may contain both covalent and metallic intra metal⁻metal bonds: This effect is related to the adsorption support selection. ELF bifurcation diagrams show individual metal⁻C and metal⁻metal interactions, as Li and Na are adsorbed on graphene and GO, at the metal coverages examined here.


Asunto(s)
Teoría Funcional de la Densidad , Grafito/química , Litio/química , Óxidos/química , Teoría Cuántica , Sodio/química , Adsorción , Algoritmos , Electrones , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Análisis Espectral
2.
bioRxiv ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36798217

RESUMEN

Vaginal microbiota composition is associated with differential risk of urogenital infection. Although vaginal Lactobacillus spp. are thought to confer protection through acidification, bacteriocin production, and immunomodulation, lack of an in vivo model system that closely resembles the human vaginal microbiota remains a prominent barrier to mechanistic discovery. We performed 16S rRNA amplicon sequencing of wildtype C57BL/6J mice, commonly used to study pathogen colonization, and found that the vaginal microbiome composition varies highly both within and between colonies from three distinct vivaria. Because of the strong influence of environmental exposure on vaginal microbiome composition, we assessed whether a humanized microbiota mouse ( HMb mice) would model a more human-like vaginal microbiota. Similar to humans and conventional mice, HMb mice vaginal microbiota clustered into five community state types ( h mCST). Uniquely, HMb mice vaginal communities were frequently dominated by Lactobacilli or Enterobacteriaceae . Compared to genetically-matched conventional mice, HMb mice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia , but no differences were observed with uropathogenic E. coli . Specifically, vaginal Enterobacteriaceae and Lactobacillus were associated with the absence of uterine GBS. Anti-GBS activity of HMb mice vaginal E. coli and L. murinus isolates, representing Enterobacteriaceae and Lactobacillus respectively, were characterized in vitro and in vivo . Although L. murinus reduced GBS growth in vitro , vaginal pre-inoculation with HMb mouse-derived E. coli , but not L. murinus , conferred protection against vaginal GBS burden. Overall, the HMb mice are an improved model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens. IMPORTANCE: An altered vaginal microbiota, typically with little to no levels of Lactobacillus , is associated with increased susceptibility to urogenital infections, although mechanisms driving this vulnerability are not fully understood. Despite known inhibitory properties of Lactobacillus against urogenital pathogens, clinical studies with Lactobacillus probiotics have shown mixed success. In this study, we characterize the impact of the vaginal microbiota on urogenital pathogen colonization using a humanized microbiota mouse model that more closely mimics the human vaginal microbiota. We found several vaginal bacterial taxa that correlated with reduced pathogen levels but showed discordant effects in pathogen inhibition between in vitro and in vivo assays. We propose that this humanized microbiota mouse platform is an improved model to describe the role of the vaginal microbiota in protection against urogenital pathogens. Furthermore, this model will be useful in testing efficacy of new probiotic strategies in the complex vaginal environment.

3.
NPJ Biofilms Microbiomes ; 9(1): 87, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985659

RESUMEN

Vaginal microbial composition is associated with differential risk of urogenital infection. Although Lactobacillus spp. are thought to confer protection against infection, the lack of in vivo models resembling the human vaginal microbiota remains a prominent barrier to mechanistic discovery. Using 16S rRNA amplicon sequencing of C57BL/6J female mice, we found that vaginal microbial composition varies within and between colonies across three vivaria. Noting vaginal microbial plasticity in conventional mice, we assessed the vaginal microbiome of humanized microbiota mice (HMbmice). Like the community structure in conventional mice, HMbmice vaginal microbiota clustered into community state types but, uniquely, HMbmice communities were frequently dominated by Lactobacillus or Enterobacteriaceae. Compared to conventional mice, HMbmice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia. Although Escherichia and Lactobacillus both correlated with the absence of uterine GBS, vaginal pre-inoculation with exogenous HMbmouse-derived E. coli, but not Ligilactobacillus murinus, reduced vaginal GBS burden. Overall, HMbmice serve as a useful model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens.


Asunto(s)
Escherichia coli , Microbiota , Humanos , Femenino , Animales , Ratones , ARN Ribosómico 16S/genética , Escherichia coli/genética , Ratones Endogámicos C57BL , Vagina , Modelos Animales de Enfermedad , Streptococcus agalactiae/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda