Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Anal Chem ; 95(7): 3563-3568, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36763923

RESUMEN

The determination of accurate equilibrium dissociation constants, Kd, of protein-small molecule complexes is important but challenging as all established methods have inherent sources of inaccuracy. Accurate Constant via Transient Incomplete Separation (ACTIS) is a new method for Kd determination using transient incomplete separation of the complex from the unbound small molecule in a pressure-driven flow inside a capillary. ACTIS is accurate, and its accuracy is invariant to variations in geometries of both the fluidic system and the flow. Furthermore, ACTIS is implemented using a simple fluidic system supporting its accuracy and providing a simple-to-follow/copy template for instrumentation. Despite the simple and robust instrumentation/acquisition, the current data processing workflow is cumbersome, time consuming, and prone to hard-to-trace human errors therefore hindering ACTIS' ability to become a practical reference method for Kd determination. This technical note describes a streamlined workflow for processing ACTIS data; the workflow is implemented as a set of open-source software tools called prACTISed (https://github.com/prACTISedProgram/prACTISed). These tools allow all steps of data processing to be performed in a fast and straightforward fashion. These practical software tools complement the simple instrumentation serving both developers and users of ACTIS.

2.
Anal Chem ; 94(44): 15415-15422, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36301587

RESUMEN

Large molecules can be generically separated from small ones, though partially and temporarily, in a pressure-driven flow inside a capillary. This transient incomplete separation has been only applied to species with diffusion coefficients different by at least an order of magnitude. Here, we demonstrate, for the first time, the analytical utility of transient incomplete separation for species with close diffusion coefficients. First, we prove in silico that even a small difference in diffusivity can lead to detectable transient incomplete separation of species. Second, we use computer simulation to prove that such a separation can be used for the reliable determination of equilibrium dissociation constant (Kd) of complexes composed of similar-sized molecules. Finally, we demonstrate experimentally the use of this separation for the accurate determination of Kd value for a protein-aptamer complex. We conclude that "accurate constant via transient incomplete separation" (ACTIS) can serve as a reference method for affinity characterization of protein-aptamer binding in solution.


Asunto(s)
Electroforesis Capilar , Oligonucleótidos , Electroforesis Capilar/métodos , Simulación por Computador , Unión Proteica , Oligonucleótidos/química , Entropía
3.
Anal Chem ; 93(34): 11654-11659, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34410698

RESUMEN

Accurate Constant via Transient Incomplete Separation (ACTIS) is a new method for finding the equilibrium dissociation constant Kd of a protein-small molecule complex based on transient incomplete separation of the complex from the unbound small molecule in a capillary. This separation is caused by differential transverse diffusion of the complex and the small molecule in a pressure-driven flow. The advection-diffusion processes underlying ACTIS can be described by a system of partial differential equations allowing for a virtual ACTIS instrument to be built and ACTIS to be studied in silico. The previous in silico studies show that large variations in the fluidic system geometry do not affect the accuracy of Kd determination, thus, proving that ACTIS is conceptually accurate. The conceptual accuracy does not preclude, however, instrumental inaccuracy caused by run-to-run signal drifts. Here we report on assembling a physical ACTIS instrument with a fluidic system that mimics the virtual one and proving the absence of signal drifts. Furthermore, we confirmed method ruggedness by assembling a second ACTIS instrument and comparing the results of experiments performed with both instruments in parallel. Despite some unintentional differences between the instruments (caused by tolerances in sizes, positions, etc.) and noticeable differences in their respective separagrams, we found that the Kd values determined for identical samples with these instruments were equal. Conclusively, the fluidic system presented here can serve as a template for reliable ACTIS instrumentation.


Asunto(s)
Entropía
4.
Anal Chem ; 92(17): 11973-11980, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786479

RESUMEN

Analytical methods may not have reference standards required for testing their accuracy. We postulate that the accuracy of an analytical method can be assessed in the absence of reference standards in silico if the method is built upon deterministic processes. A deterministic process can be precisely computer-simulated, thus allowing virtual experiments with virtual reference standards. Here, we apply this in silico approach to study "Accurate Constant via Transient Incomplete Separation" (ACTIS), a method for finding the equilibrium dissociation constant (Kd) of protein-small-molecule complexes. ACTIS is based on a deterministic process: molecular diffusion of the interacting protein-small-molecule pair in a laminar pipe flow. We used COMSOL software to construct a virtual ACTIS setup with a fluidic system mimicking that of a physical ACTIS instrument. Virtual ACTIS experiments performed with virtual samples-mixtures of a protein and a small molecule with defined rate constants and, thus, Kd of their interaction-allowed us to assess ACTIS accuracy by comparing the determined Kd value to the input Kd value. Further, the influence of multiple system parameters on ACTIS accuracy was investigated. Within multifold ranges of parameter values, the values of Kd did not deviate from the input Kd values by more than a factor of 1.25, strongly suggesting that ACTIS is intrinsically accurate and that its accuracy is robust. Accordingly, further development of ACTIS can focus on achieving high reproducibility and precision. We foresee that in silico accuracy assessment, demonstrated here with ACTIS, will be applicable to other analytical methods built upon deterministic processes.

5.
Angew Chem Int Ed Engl ; 58(20): 6635-6639, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30901510

RESUMEN

Current practical methods for finding the equilibrium dissociation constant, Kd , of protein-small molecule complexes have inherent sources of inaccuracy. Introduced here is "accurate constant via transient incomplete separation" (ACTIS), which appears to be free of inherent sources of inaccuracy. Conceptually, a short plug of the pre-equilibrated protein-small molecule mixture is pressure-propagated in a capillary, causing fast transient incomplete separation of the complex from the unbound small molecule. A superposition of signals from these two components is measured near the capillary exit and used to calculate a fraction of unbound small molecule, which, in turn, is used to calculate Kd . Herein the validity of ACTIS is proven theoretically, its accuracy is verified by computer simulation, and its practical use is demonstrated. ACTIS has the potential to become a reference-standard method for determining Kd  values of protein-small molecule complexes.


Asunto(s)
Electroforesis Capilar/métodos , Proteínas/química
6.
ACS Chem Biol ; 19(9): 1852-1867, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39121869

RESUMEN

The equilibrium dissociation constant (Kd) is a major characteristic of affinity complexes and one of the most frequently determined physicochemical parameters. Despite its significance, the values of Kd obtained for the same complex under similar conditions often exhibit considerable discrepancies and sometimes vary by orders of magnitude. These inconsistencies highlight the susceptibility of Kd determination to large systematic errors, even when random errors are small. It is imperative to both minimize and quantitatively assess the systematic errors inherent in Kd determination. Traditionally, Kd values are determined through nonlinear regression of binding isotherms. This analysis utilizes three variables: concentrations of two reactants and a fraction R of unbound limiting reactant. The systematic errors in Kd arise directly from systematic errors in these variables. Therefore, to maximize the accuracy of Kd, this study thoroughly analyzes the sources of systematic errors within the three variables, including (i) non-additive signals to calculate R, (ii) mis-calibrated experimental instruments, (iii) inaccurate calibration parameters, (iv) insufficient incubation time, (v) unsaturated binding isotherm, (vi) impurities in the reactants, and (vii) solute adsorption onto surfaces. Through this analysis, we illustrate how each source contributes to inaccuracies in the determination of Kd and propose strategies to minimize these contributions. Additionally, we introduce a method for quantitatively assessing the confidence intervals of systematic errors in concentrations, a crucial step toward quantitatively evaluating the accuracy of Kd. While presenting original findings, this paper also reiterates the fundamentals of Kd determination, hence guiding researchers across all proficiency levels. By shedding light on the sources of systematic errors and offering strategies for their mitigation, our work will help researchers enhance the accuracy of Kd determination, thereby making binding studies more reliable and the conclusions drawn from such studies more robust.


Asunto(s)
Unión Proteica , Cinética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda