Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Antimicrob Agents Chemother ; 66(4): e0204121, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35262374

RESUMEN

We previously identified a series of triazolopyrimidines with antitubercular activity. We determined that Mycobacterium tuberculosis strains with mutations in QcrB, a subunit of the cytochrome bcc-aa3 supercomplex, were resistant. A cytochrome bd oxidase deletion strain was more sensitive to this series. We isolated resistant mutants with mutations in Rv1339. Compounds led to the depletion of intracellular ATP levels and were active against intracellular bacteria, but they did not inhibit human mitochondrial respiration. These data are consistent with triazolopyrimidines acting via inhibition of QcrB.


Asunto(s)
Mycobacterium tuberculosis , Antituberculosos/farmacología , Citocromos , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Respiración
2.
Artículo en Inglés | MEDLINE | ID: mdl-30962346

RESUMEN

Mycobacterium tuberculosis is the leading cause of morbidity and death resulting from infectious disease worldwide. The incredible disease burden, combined with the long course of drug treatment and an increasing incidence of antimicrobial resistance among M. tuberculosis isolates, necessitates novel drugs and drug targets for treatment of this deadly pathogen. Recent work has produced several promising clinical candidates targeting components of the electron transport chain (ETC) of M. tuberculosis, highlighting this pathway's potential as a drug target. Menaquinone is an essential component of the M. tuberculosis ETC, as it functions to shuttle electrons through the ETC to produce the electrochemical gradient required for ATP production for the cell. We show that inhibitors of MenA, a component of the menaquinone biosynthetic pathway, are highly active against M. tuberculosis MenA inhibitors are bactericidal against M. tuberculosis under both replicating and nonreplicating conditions, with 10-fold higher bactericidal activity against nutrient-starved bacteria than against replicating cultures. MenA inhibitors have enhanced activity in combination with bedaquiline, clofazimine, and inhibitors of QcrB, a component of the cytochrome bc1 oxidase. Together, these data support MenA as a viable target for drug treatment against M. tuberculosis MenA inhibitors not only kill M. tuberculosis in a variety of physiological states but also show enhanced activity in combination with ETC inhibitors in various stages of clinical trial testing.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Clofazimina/farmacología , Diarilquinolinas/farmacología , Transporte de Electrón/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción/efectos de los fármacos
3.
Front Microbiol ; 9: 2417, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364170

RESUMEN

Mycobacterium abscessus infections are increasing worldwide. Current drug regimens are largely ineffective, yet the current development pipeline for M. abscessus is alarmingly sparse. Traditional discovery efforts for M. abscessus assess the capability of a new drug to inhibit bacterial growth under nutrient-rich growth conditions, but this does not predict the impact when used in the clinic. The disconnect between in vitro and in vivo activity is likely due to the genetic and physiological adaptation of the bacteria to the environmental conditions encountered during infection; these include low oxygen tension and nutrient starvation. We sought to fill a gap in the drug discovery pipeline by establishing an assay to identify novel compounds with bactericidal activity against M. abscessus under non-replicating conditions. We developed and validated a novel screen using nutrient starvation to generate a non-replicating state. We used alamarBlue® to measure metabolic activity and demonstrated this correlates with bacterial viability under these conditions. We optimized key parameters and demonstrated reproducibility. Using this assay, we determined that niclosamide was bactericidal against non-replicating bacilli, highlighting its potential to be included in M. abscessus regimens. In contrast, most other drugs currently used in the clinic for M. abscessus infections, were completely inactive, potentially explaining their poor efficacy. Thus, our assay allows for rapid identification of bactericidal compounds in a model using conditions that are more relevant in vivo. This screen can be used in a high-throughput way to identify novel agents with properties that promise an increase in efficacy, while also shortening treatment times.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda