Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Antimicrob Agents Chemother ; 68(2): e0138723, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38189278

RESUMEN

The cell-to-cell communication system quorum sensing (QS), used by various pathogenic bacteria to synchronize gene expression and increase host invasion potentials, is studied as a potential target for persistent infection control. To search for novel molecules targeting the QS system in the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, a chemical library consisting of 3,280 small compounds from LifeArc was screened. A series of 10 conjugated phenones that have not previously been reported to target bacteria were identified as inhibitors of QS in P. aeruginosa. Two lead compounds (ethylthio enynone and propylthio enynone) were re-synthesized for verification of activity and further elucidation of the mode of action. The isomeric pure Z-ethylthio enynone was used for RNA sequencing, revealing a strong inhibitor of QS-regulated genes, and the QS-regulated virulence factors rhamnolipid and pyocyanin were significantly decreased by treatment with the compounds. A transposon mutagenesis screen performed in a newly constructed lasB-gfp monitor strain identified the target of Z-ethylthio enynone in P. aeruginosa to be the MexEF-OprN efflux pump, which was further established using defined mex knockout mutants. Our data indicate that the QS inhibitory capabilities of Z-ethylthio enynone were caused by the drainage of intracellular signal molecules as a response to chemical-induced stimulation of the MexEF-oprN efflux pump, thereby inhibiting the autogenerated positive feedback and its enhanced signal-molecule synthesis.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/genética , Percepción de Quorum/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética
2.
Antimicrob Agents Chemother ; : e0148123, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717093

RESUMEN

Persistent urinary tract infections (UTIs) in hospitalized patients constitute an important medical problem. It is estimated that 75% of nosocomial UTIs are associated with urinary tract catheters with P. aeruginosa being a species that forms biofilms on these catheters. These infections are highly resistant to standard-of-care antibiotics, and the effects of the host immune defenses, which allows for development of persistent infections. With antibiotics losing their efficacy, new treatment options against resilient infections, such as catheter-associated urinary tract infections (CAUTIs), are critically needed. Central to our anti-biofilm approach is the manipulation of the c-di-GMP signaling pathway in P. aeruginosa to switch bacteria from the protective biofilm to the unprotected planktonic mode of life. We recently identified a compound (H6-335-P1), that stimulates the c-di-GMP degrading activity of the P. aeruginosa BifA protein which plummets the intracellular c-di-GMP content and induces dispersal of P. aeruginosa biofilm bacteria into the planktonic state. In the present study, we formulated H6-335-P1 as a hydrochloride salt (Disperazol), which is water-soluble and facilitates delivery via injection or oral administration. Disperazol can work as a monotherapy, but we observed a 100-fold improvement in efficacy when treating murine P. aeruginosa CAUTIs with a Disperazol/ciprofloxacin combination. Biologically active Disperazol reached the bladder 30 min after oral administration. Our study provides proof of concept that Disperazol can be used in combination with a relevant antibiotic for effective treatment of CAUTIs.

3.
Microbiology (Reading) ; 170(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212539

RESUMEN

The extracellular matrix of microbial biofilms has traditionally been viewed as a structural scaffold that retains the resident bacteria in the biofilm. Moreover, a role of the matrix in the tolerance of biofilms to antimicrobials and environmental stressors was recognized early in biofilm research. However, as research progressed it became apparent that the biofilm matrix can also be involved in processes such as bacterial migration, genetic exchange, ion capture and signalling. More recently, evidence has accumulated that the biofilm matrix can also have catalytic functions. Here we review foundational research on this fascinating catalytic role of the biofilm matrix.


Asunto(s)
Bacterias , Biopelículas , Biopelículas/crecimiento & desarrollo , Bacterias/genética , Bacterias/metabolismo , Matriz Extracelular/metabolismo , Fenómenos Fisiológicos Bacterianos
4.
Artículo en Inglés | MEDLINE | ID: mdl-33495218

RESUMEN

A decade of research has shown that the molecule c-di-GMP functions as a central second messenger in many bacteria. A high level of c-di-GMP is associated with biofilm formation, whereas a low level of c-di-GMP is associated with a planktonic single-cell bacterial lifestyle. c-di-GMP is formed by diguanylate cyclases and is degraded by specific phosphodiesterases. We previously presented evidence that the ectopic expression of the Escherichia coli phosphodiesterase YhjH in Pseudomonas aeruginosa results in biofilm dispersal. More recently, however, evidence has been presented that the induction of native c-di-GMP phosphodiesterases does not lead to a dispersal of P. aeruginosa biofilms. The latter result may discourage attempts to use c-di-GMP signaling as a target for the development of antibiofilm drugs. However, here, we demonstrate that the induction of the P. aeruginosa c-di-GMP phosphodiesterases PA2133 and BifA indeed results in the dispersal of P. aeruginosa biofilms in both a microtiter tray biofilm assay and a flow cell biofilm system.


Asunto(s)
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
5.
Infect Immun ; 89(1)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33077623

RESUMEN

Bacterial biofilms may cause chronic infections due to their ability to evade clearance by the immune system and antibiotics. The persistent biofilms induce a hyperinflammatory state that damages the surrounding host tissue. Knowledge about the components of biofilms that are responsible for provoking the harmful but inefficient immune response is limited. Flagella are known to stimulate the response of polymorphonuclear leukocytes (PMNs) to planktonic solitary bacteria. However, we provide evidence that flagella are not a prerequisite for the response of PMNs to Pseudomonas aeruginosa biofilms. Instead, we found that extracellular matrix polysaccharides in P. aeruginosa biofilms play a role in the response of PMNs toward biofilms. Using a set of P. aeruginosa mutants with the ability to produce a subset of matrix exopolysaccharides, we found that P. aeruginosa biofilms with distinct exopolysaccharide matrix components elicit distinct PMN responses. In particular, the PMNs respond aggressively toward a biofilm matrix consisting of both Psl and alginate exopolysaccharides. These findings are relevant for therapeutic strategies aimed at dampening the collateral damage associated with biofilm-based infections.


Asunto(s)
Biopelículas , Interacciones Huésped-Patógeno/inmunología , Neutrófilos/inmunología , Polisacáridos Bacterianos/inmunología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología , Matriz Extracelular/inmunología , Matriz Extracelular/metabolismo , Flagelos/inmunología , Humanos , Neutrófilos/metabolismo , Infecciones por Pseudomonas/metabolismo
6.
Microbiology (Reading) ; 165(3): 324-333, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30663958

RESUMEN

The human pathogen Pseudomonas aeruginosa can cause both acute infections and chronic biofilm-based infections. Expression of acute virulence factors is positively regulated by cAMP, whereas biofilm formation is positively regulated by c-di-GMP. We provide evidence that increased levels of cAMP, caused by either a lack of degradation or increased production, inhibit P. aeruginosa biofilm formation. cAMP-mediated inhibition of P. aeruginosa biofilm formation required Vfr, and involved a reduction of the level of c-di-GMP, as well as reduced production of biofilm matrix components. A mutant screen and characterization of defined knockout mutants suggested that a subset of c-di-GMP-degrading phosphodiesterases is involved in cAMP-Vfr-mediated biofilm inhibition in P. aeruginosa.


Asunto(s)
Biopelículas/crecimiento & desarrollo , AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Mutación , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo
7.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29269495

RESUMEN

For the past 150 years, bacteria have been investigated primarily in liquid batch cultures. Contrary to most expectations, these cultures are not homogeneous mixtures of single-cell bacteria, because free-floating bacterial aggregates eventually develop in most liquid batch cultures. These aggregates share characteristics with biofilms, such as increased antibiotic tolerance. We investigated how aggregates develop and what influences this development in liquid batch cultures of Pseudomonas aeruginosa We focused on how the method of inoculation affected aggregation by assessing aggregate frequency and size using confocal laser scanning microscopy. Several traditional methods of initiating an overnight bacterial culture, i.e., inoculation directly from frozen cultures, inoculation using agar-grown cells, or inoculation using cells grown in liquid cultures, were investigated. We discovered a direct link between the inoculation method and the size and frequency of biofilm aggregates in liquid batch cultures, with inoculation directly from a plate resulting in the most numerous and largest aggregates. These large aggregates had an overall impact on the cultures' subsequent tolerance toward tobramycin, indicating that the inoculation method has a profound impact on antibiotic tolerance. We also observed a mechanism whereby preformed aggregates recruited single cells from the surrounding culture in a "snowball effect," building up aggregated biomass in the culture. This recruitment was found to rely heavily on the exopolysaccharide Psl. Additionally, we found that both Escherichia coli and Staphylococcus aureus produced aggregates in liquid batch cultures. Our results stress the importance of inoculation consistency throughout experiments and the substantial impact aggregate development in liquid batch cultures may have on the outcomes of microbiological experiments.IMPORTANCE Pure liquid cultures are fundamental to the field of microbiological research. These cultures are normally thought of as homogeneous mixtures of single-cell bacteria; the present study shows that this is not always true. Bacteria may aggregate in these liquid cultures. The aggregation can be induced by the method chosen for inoculation. The presence of aggregates can significantly change the outcomes of experiments by altering the phenotype of the cultures. The study found a mechanism whereby preformed aggregates are able to recruit surrounding single cells in a form of snowball effect, creating more and larger aggregates in the cultures. Once formed, these aggregates are hard to remove. Aggregates in liquid cultures may be an immense unseen challenge for microbiologists.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Biopelículas , Farmacorresistencia Bacteriana , Pseudomonas aeruginosa/fisiología , Antibacterianos/farmacología , Escherichia coli/fisiología , Microscopía Confocal , Staphylococcus aureus/fisiología
8.
Microbiology (Reading) ; 162(10): 1797-1807, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27526691

RESUMEN

Current antibiotic treatments are insufficient in eradicating bacterial biofilms, which represent the primary cause of chronic bacterial infections. Thus, there is an urgent need for new strategies to eradicate biofilm infections. The second messenger c-di-GMP is a positive regulator of biofilm formation in many clinically relevant bacteria. It is hypothesized that drugs lowering the intracellular level of c-di-GMP will force biofilm bacteria into a more treatable planktonic lifestyle. To identify compounds capable of lowering c-di-GMP levels in Pseudomonas aeruginosa, we screened 5000 compounds for their potential c-di-GMP-lowering effect using a recently developed c-di-GMP biosensor strain. Our screen identified the anti-cancerous drug doxorubicin as a potent c-di-GMP inhibitor. In addition, the drug decreased the transcription of many biofilm-related genes. However, despite its effect on the c-di-GMP content in P. aeruginosa, doxorubicin was unable to inhibit biofilm formation or disperse established biofilms. On the contrary, the drug was found to promote P. aeruginosa biofilm formation, possibly through release of extracellular DNA from a subpopulation of killed bacteria. Our findings emphasize that lowering of the c-di-GMP content in bacteria might not be sufficient to mediate biofilm inhibition or dispersal.


Asunto(s)
Antineoplásicos/farmacología , Biopelículas/efectos de los fármacos , GMP Cíclico/análogos & derivados , Doxorrubicina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología
9.
J Bacteriol ; 197(13): 2190-200, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25897033

RESUMEN

UNLABELLED: The opportunistic human pathogen Pseudomonas aeruginosa expresses numerous acute virulence factors in the initial phase of infection, and during long-term colonization it undergoes adaptations that optimize survival in the human host. Adaptive changes that often occur during chronic infection give rise to rugose small colony variants (RSCVs), which are hyper-biofilm-forming mutants that commonly possess mutations that increase production of the biofilm-promoting secondary messenger cyclic di-GMP (c-di-GMP). We show that RSCVs display a decreased production of acute virulence factors as a direct result of elevated c-di-GMP content. Overproduction of c-di-GMP causes a decrease in the transcription of virulence factor genes that are regulated by the global virulence regulator Vfr. The low level of Vfr-dependent transcription is caused by a low level of its coactivator, cyclic AMP (cAMP), which is decreased in response to a high level of c-di-GMP. Mutations that cause reversion of the RSCV phenotype concomitantly reactivate Vfr-cAMP signaling. Attempts to uncover the mechanism underlying the observed c-di-GMP-mediated lowering of cAMP content provided evidence that it is not caused by inhibition of adenylate cyclase production or activity and that it is not caused by activation of cAMP phosphodiesterase activity. In addition to the studies of the RSCVs, we present evidence that the deeper layers of wild-type P. aeruginosa biofilms have high c-di-GMP levels and low cAMP levels. IMPORTANCE: Our work suggests that cross talk between c-di-GMP and cAMP signaling pathways results in downregulation of acute virulence factors in P. aeruginosa biofilm infections. Knowledge about this cross-regulation adds to our understanding of virulence traits and immune evasion by P. aeruginosa in chronic infections and may provide new approaches to eradicate biofilm infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/genética , Proteína Receptora de AMP Cíclico/genética , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas aeruginosa/genética
10.
J Bacteriol ; 197(6): 1026-39, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25384477

RESUMEN

The PA4203 gene encodes a LysR regulator and lies between the ppgL gene (PA4204), which encodes a periplasmic gluconolactonase, and, in the opposite orientation, the PA4202 (nmoA) gene, coding for a nitronate monooxygenase, and ddlA (PA4201), encoding a d-alanine alanine ligase. The intergenic regions between PA4203 and ppgL and between PA4203 and nmoA are very short (79 and 107 nucleotides, respectively). Here we show that PA4203 (nmoR) represses its own transcription and the expression of nmoA. A chromatin immunoprecipitation analysis showed the presence of a single NmoR binding site between nmoA and nmoR, which was confirmed by electrophoretic mobility shift assays (EMSAs) with the purified NmoR protein. Despite this observation, a transcriptome analysis revealed more genes to be affected in an nmoR mutant, including genes known to be part of the MexT LysR activator regulon. The PA1225 gene, encoding a quinone oxidoreductase, was the most highly upregulated gene in the nmoR deletion mutant, independently of MexT. Finally, deletion of the nmoA gene resulted in an increased sensitivity of the cells to 3-nitropropionic acid (3-NPA), confirming the role of the nitronate monooxygenase protein in the detoxification of nitronate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Oxigenasas de Función Mixta/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Simulación por Computador , ADN Intergénico/genética , Eliminación de Gen , Genoma Bacteriano , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Pseudomonas aeruginosa/genética
11.
Microbiology (Reading) ; 161(12): 2289-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26419730

RESUMEN

Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.


Asunto(s)
Biopelículas , Lipopéptidos/metabolismo , Péptidos Cíclicos/metabolismo , Pseudomonas fluorescens/fisiología , Tensoactivos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética
12.
Environ Microbiol ; 16(7): 1961-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24592823

RESUMEN

In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/genética , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/metabolismo , GMP Cíclico/metabolismo , Polisacáridos Bacterianos/biosíntesis , Pseudomonas aeruginosa/metabolismo , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo , Percepción de Quorum/genética , ARN Pequeño no Traducido/metabolismo , Sistemas de Mensajero Secundario/genética , Especificidad de la Especie
13.
Biofouling ; 30(8): 883-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25184429

RESUMEN

Photodynamic therapy (PDT) combines the use of organic dyes (photosensitizers, PSs) and visible light in order to elicit a photo-oxidative stress which causes bacterial death. GD11, a recently synthesized PS belonging to the boron-dipyrromethene (BODIPY) class, was demonstrated to be efficient against planktonic cultures of Pseudomonas aeruginosa, causing a 7 log unit reduction of viable cells when administered at 2.5 µM. The effectiveness of GD11 against P. aeruginosa biofilms grown in flow-cells and microtiter trays was also demonstrated. Confocal laser scanning microscopy of flow-cell-grown biofilms suggests that the treatment has a biocidal effect against bacterial biofilm cells.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Biopelículas/efectos de la radiación , Boro/farmacología , Microscopía Confocal , Porfobilinógeno/análogos & derivados , Porfobilinógeno/farmacología , Pseudomonas aeruginosa/efectos de la radiación
14.
Biofilm ; 8: 100207, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39021701

RESUMEN

The crystal violet microtiter plate biofilm assay is often used to compare the amount of biofilm formed by a mutant versus wild-type or a compound-treated biofilm versus the non-treatment control. In many of these studies the amount of biofilm is assessed only at one single time point. However, if the dynamics of biofilm development of the mutant (or compound-treated biofilm) is different than that of the wild-type (or non-treatment control), then biofilm quantification at a single time point may give misleading results. To overcome this shortcoming of the common biofilm quantification technique, we recommend to use a serial dilution-based crystal violet microtiter plate biofilm assay for easy assessment of the dynamics of biofilm development and dispersal. We demonstrate that the dilution-resolved crystal violet assay displays the dynamics of Pseudomonas aeruginosa biofilm development and dispersal as efficient as a time-resolved crystal violet assay. In addition, focusing on mutants of different parts of the c-di-GMP signaling system in P. aeruginosa, we provide an example illustrating the need to assess biofilm dynamics instead of quantifying biofilm biomass at a single time point.

15.
Nat Microbiol ; 9(8): 1964-1978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38918470

RESUMEN

Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.


Asunto(s)
Clostridium , Fibras de la Dieta , Escherichia coli , Heces , Microbioma Gastrointestinal , Indoles , Triptófano , Triptófano/metabolismo , Animales , Humanos , Microbioma Gastrointestinal/fisiología , Fibras de la Dieta/metabolismo , Heces/microbiología , Ratones , Indoles/metabolismo , Escherichia coli/metabolismo , Clostridium/metabolismo , Vida Libre de Gérmenes , Propionatos/metabolismo , Interacciones Microbianas , Trasplante de Microbiota Fecal
16.
Front Microbiol ; 15: 1341728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333580

RESUMEN

Regulating the transition of bacteria from motile to sessile lifestyles is crucial for their ability to compete effectively in the rhizosphere environment. Pseudomonas are known to rely on extracellular matrix (ECM) components for microcolony and biofilm formation, allowing them to adapt to a sessile lifestyle. Pseudomonas ogarae F113 possesses eight gene clusters responsible for the production of ECM components. These gene clusters are tightly regulated by AmrZ, a major transcriptional regulator that influences the cellular levels of c-di-GMP. The AmrZ-mediated transcriptional regulation of ECM components is primarily mediated by the signaling molecule c-di-GMP and the flagella master regulator FleQ. To investigate the functional role of these ECM components in P. ogarae F113, we performed phenotypic analyses using mutants in genes encoding these ECM components. These analyses included assessments of colony morphology, dye-staining, static attachment to abiotic surfaces, dynamic biofilm formation on abiotic surfaces, swimming motility, and competitive colonization assays of the rhizosphere. Our results revealed that alginate and PNAG polysaccharides, along with PsmE and the fimbrial low molecular weight protein/tight adherence (Flp/Tad) pilus, are the major ECM components contributing to biofilm formation. Additionally, we found that the majority of these components and MapA are needed for a competitive colonization of the rhizosphere in P. ogarae F113.

17.
Infect Immun ; 81(8): 2705-13, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23690403

RESUMEN

Opportunistic pathogenic bacteria can engage in biofilm-based infections that evade immune responses and develop into chronic conditions. Because conventional antimicrobials cannot efficiently eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. It has recently been established that the secondary messenger cyclic diguanosine monophosphate (c-di-GMP) functions as a positive regulator of biofilm formation in several different bacteria. In the present study we investigated whether manipulation of the c-di-GMP level in bacteria potentially can be used for biofilm control in vivo. We constructed a Pseudomonas aeruginosa strain in which a reduction in the c-di-GMP level can be achieved via induction of the Escherichia coli YhjH c-di-GMP phosphodiesterase. Initial experiments showed that induction of yhjH expression led to dispersal of the majority of the bacteria in in vitro-grown P. aeruginosa biofilms. Subsequently, we demonstrated that P. aeruginosa biofilms growing on silicone implants, located in the peritoneal cavity of mice, dispersed after induction of the YhjH protein. Bacteria accumulated temporarily in the spleen after induction of biofilm dispersal, but the mice tolerated the dispersed bacteria well. The present work provides proof of the concept that modulation of the c-di-GMP level in bacteria is a viable strategy for biofilm control.


Asunto(s)
Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/fisiología , 3',5'-GMP Cíclico Fosfodiesterasas/genética , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Animales , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/genética , Femenino , Ratones , Ratones Endogámicos BALB C , Infecciones por Pseudomonas/metabolismo
18.
Antimicrob Agents Chemother ; 57(5): 2066-75, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23403434

RESUMEN

Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is an intracellular second messenger that controls the lifestyles of many bacteria. A high intracellular level of c-di-GMP induces a biofilm lifestyle, whereas a low intracellular level of c-di-GMP stimulates dispersal of biofilms and promotes a planktonic lifestyle. Here, we used the expression of different reporters to show that planktonic cells, biofilm cells, and cells dispersed from biofilms (DCells) had distinct intracellular c-di-GMP levels. Proteomics analysis showed that the low intracellular c-di-GMP level of DCells induced the expression of proteins required for the virulence and development of antimicrobial peptide resistance in Pseudomonas aeruginosa. In accordance with this, P. aeruginosa cells with low c-di-GMP levels were found to be more resistant to colistin than P. aeruginosa cells with high c-di-GMP levels. This finding contradicts the current dogma stating that dispersed cells are inevitably more susceptible to antibiotics than their sessile counterparts.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Colistina/farmacología , GMP Cíclico/análogos & derivados , Farmacorresistencia Bacteriana/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pseudomonas aeruginosa/genética , Sistemas de Mensajero Secundario/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , GMP Cíclico/metabolismo , Farmacorresistencia Bacteriana/genética , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Proteómica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo
19.
Appl Environ Microbiol ; 78(15): 5060-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22582064

RESUMEN

The increased tolerance toward the host immune system and antibiotics displayed by biofilm-forming Pseudomonas aeruginosa and other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP in P. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsive cdrA promoter to genes encoding green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP in P. aeruginosa strains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment of P. aeruginosa with the phosphodiesterase inducer nitric oxide. Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathogenicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology of P. aeruginosa.


Asunto(s)
Biopelículas , GMP Cíclico/análisis , Fluorescencia , Genes Reporteros/genética , Pseudomonas aeruginosa/química , Adhesinas Bacterianas/genética , Proteínas Fluorescentes Verdes/genética , Plásmidos/genética , Regiones Promotoras Genéticas/genética
20.
Biofouling ; 28(8): 835-42, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22877233

RESUMEN

The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities.


Asunto(s)
Biopelículas , Técnicas de Cultivo de Célula/instrumentación , Pseudomonas aeruginosa/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda