Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894750

RESUMEN

Cancer immunotherapy strategies are based on the utilization of immune checkpoint inhibitors to instigate an antitumor immune response. The efficacy of immune checkpoint blockade, directed at adaptive immune checkpoints, has been demonstrated in select cancer types. However, only a limited subset of patients has exhibited definitive outcomes characterized by a sustained response after discontinuation of therapy. Recent investigations have highlighted the significance of immune checkpoint molecules that are overexpressed in cancer cells and inhibit myeloid lineage immune cells within a tumor microenvironment. These checkpoints are identified as potential targets for anticancer immune responses. Notably, the immune checkpoint molecules CD24 and CD200 have garnered attention owing to their involvement in tumor immune evasion. CD24 and CD200 are overexpressed across diverse cancer types and serve as signaling checkpoints by engaging their respective receptors, Siglec-10 and CD200 receptor, which are expressed on tumor-associated myeloid cells. In this review, we summarized and discussed the latest advancements and insights into CD24 and CD200 as emergent immune checkpoint moieties, further delving into their therapeutic potentials for cancer treatment.


Asunto(s)
Proteínas de Punto de Control Inmunitario , Neoplasias , Humanos , Antígeno CD24 , Inmunoterapia , Células Mieloides , Neoplasias/patología , Escape del Tumor , Microambiente Tumoral
2.
Molecules ; 27(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080491

RESUMEN

Inflammation is an immune response to cellular damage caused by various stimuli (internal or external) and is essential to human health. However, excessive inflammatory responses may be detrimental to the host. Considering that the existing drugs for the treatment of inflammatory diseases have various side effects, such as allergic reactions, stomach ulcers, and cardiovascular problems, there is a need for research on new anti-inflammatory agents with low toxicity and fewer side effects. As 4',6-dimethoxyisoflavone-7-O-ß-d-glucopyranoside (wistin) is a phytochemical that belongs to an isoflavonoid family, we investigated whether wistin could potentially serve as a novel anti-inflammatory agent. In this study, we found that wistin significantly reduced the production of nitric oxide and intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW 264.7 cells. Moreover, wistin reduced the mRNA levels of pro-inflammatory enzymes (inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2)) and cytokines (interleukin (IL)-1ß and IL-6) and significantly reduced the protein expression of pro-inflammatory enzymes (iNOS and COX-2). Furthermore, wistin reduced the activation of the nuclear factor-κB and p38 signaling pathways. Together, these results suggest that wistin is a prospective candidate for the development of anti-inflammatory drugs.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Antiinflamatorios/farmacología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Transducción de Señal
3.
Molecules ; 25(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333788

RESUMEN

Phytochemicals are known to have anti-inflammatory effects in vitro and in vivo, such as in inflammatory disease model systems. Inflammation is an essential immune response to exogenous stimuli such as infection and injury. Although inflammation is a necessary host-defense mechanism, chronic inflammation is associated with the continuous local or systemic release of inflammatory mediators, non-cytokine mediators, such as ROS and NO, and inflammatory cytokines are strongly implicated in the pathogenesis of various inflammatory disorders. Phytochemicals that exhibit anti-inflammatory mechanisms that reduce sustained inflammation could be therapeutic candidates for various inflammatory diseases. These phytochemicals act by modulating several main inflammatory signaling pathways, including NF-κB, MAPKs, STAT, and Nrf-2 signaling. Here, we discuss the characteristics of phytochemicals that possess anti-inflammatory activities in various chronic inflammatory diseases and review the molecular signaling pathways altered by these anti-inflammatory phytochemicals, with a focus on transcription factor pathways. Furthermore, to evaluate the phytochemicals as drug candidates, we translate the effective doses of phytochemicals in mice or rat disease models into the human-relevant equivalent and compare the human-relevant equivalent doses of several phytochemicals with current anti-inflammatory drugs doses used in different types of chronic inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Fitoquímicos/farmacología , Animales , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/patología , Fitoquímicos/uso terapéutico
4.
Cancer Med ; 12(20): 20380-20395, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843231

RESUMEN

BACKGROUND: TRAIL is an anticancer drug that induces cancer cell apoptosis by interacting with death receptors (DRs). However, owing to low cell-surface expression of DRs, certain colorectal cancer (CRC) cells resist TRAIL-induced apoptosis. Newcastle disease virus (NDV) infection can elevate DR protein expression in cancer cells, potentially influencing their TRAIL sensitivity. However, the precise mechanism by which NDV infection modulates DR expression and impacts TRAIL sensitivity in cancer cells remains unknown. METHODS: Herein, we developed nonpathogenic NDV VG/GA strain-based recombinant NDV (rNDV) and TRAIL gene-containing rNDV (rNDV-TRAIL). We observed that viral infections lead to increased DR and TRAIL expressions and activate signaling proteins involved in intrinsic and extrinsic apoptosis pathways. Experiments were conducted in vitro using TRAIL-resistant CRC cells (HT-29) and nonresistant CRC cells (HCT116) and in vivo using relevant mouse models. RESULTS: rNDV-TRAIL was found to exhibit better apoptotic efficacy than rNDV in CRC cells. Notably, rNDV-TRAIL had the stronger cancer cell-killing effect in TRAIL-resistant CRC cells. Western blot analyses showed that both rNDV and rNDV-TRAIL infections activate signaling proteins involved in the intrinsic and extrinsic apoptotic pathways. Notably, rNDV-TRAIL promotes concurrent intrinsic and extrinsic signal transduction in both HCT-116 and HT-29 cells. CONCLUSIONS: Therefore, rNDV-TRAIL infection effectively enhances DR expression in DR-depressed HT-29 cells. Moreover, the TRAIL protein expressed by rNDV-TRAIL effectively interacts with DR, leading to enhanced apoptosis in TRAIL-resistant HT-29 cells. Therefore, rNDV-TRAIL has potential as a promising therapeutic approach for treating TRAIL-resistant cancers.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Animales , Ratones , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Células HT29 , Células HCT116 , Antineoplásicos/metabolismo , Apoptosis , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/genética
5.
Life (Basel) ; 11(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34833017

RESUMEN

The clearance of apoptotic cells is known to be a critical step in maintaining tissue and organism homeostasis. This process is rapidly/promptly mediated by recruited or resident phagocytes. Phagocytes that engulf apoptotic cells have been closely linked to the release of anti-inflammatory cytokines to eliminate inflammatory responses. Defective clearance of apoptotic cells can cause severe inflammation and autoimmune responses due to secondary necrosis of apoptotic cells. Recently accumulated evidence indicates that apoptotic cells and their clearance have important physiological roles in addition to immune-related functions. Herein, we review the current understanding of the mechanisms and fundamental roles of apoptotic cell clearance and the beneficial roles of apoptotic cells in physiological processes such as differentiation and development.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda