Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 19(10): e1011743, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871107

RESUMEN

Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.


Asunto(s)
Vesículas Extracelulares , Enfermedades Periodontales , Periodontitis , Ratones , Animales , Enfermedades Neuroinflamatorias , Ganglio del Trigémino , Factor 88 de Diferenciación Mieloide/metabolismo , Periodontitis/metabolismo , Enfermedades Periodontales/metabolismo , Barrera Hematoencefálica/metabolismo , Citocinas/metabolismo , Ratones Noqueados , Vesículas Extracelulares/metabolismo
2.
J Neuroinflammation ; 16(1): 190, 2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31655606

RESUMEN

BACKGROUND: The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. METHODS: BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 µg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1ß, and TNF-α levels were analyzed by ELISA. RESULTS: Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. CONCLUSIONS: Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain.


Asunto(s)
Astrocitos/metabolismo , Dasatinib/farmacología , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Células Cultivadas , Dasatinib/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/antagonistas & inhibidores
3.
Chemistry ; 23(13): 3117-3125, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28000284

RESUMEN

A new mononuclear nickel(II) complex, [NiII (dpaq)Cl] (1), containing a tetradentate monoamido ligand, dpaq (dpaq=2-[bis(pyridin-2-ylmethyl)amino]-N-(quinolin-8-yl)acetamide), has been synthesized and characterized by IR spectroscopy, elemental analysis, and UV/Vis spectroscopy. The structure of the nickel complex has been determined by X-ray crystallography. This nonheme NiII complex 1 catalyzed the epoxidation reaction of a wide range of olefins with meta-chloroperoxybenzoic acid (m-CPBA) under mild conditions. Olefin epoxidation using this catalytic system has been proposed to involve a new reactive NiIV -oxo (4) species, based on the evidence from a PPAA (peroxyphenylacetic acid) probe, Hammett studies, H218 O exchange experiments, and ESI mass spectroscopic analysis. Moreover, the nature of solvent significantly influenced partitioning between heterolytic and homolytic O-O bond cleavage of the Ni-acylperoxo intermediate (2). The O-O bond of 2 proceeded predominantly through heterolytic cleavage in a protic solvent, such as CH3 OH. These results suggest that possibly a NiIV -oxo species is a common reactive intermediate in protic solvents. The two active oxidants, namely NiIV -oxo (3) and NiIII -oxo (4), which are responsible for stereospecific olefin epoxidation and radical-type oxidations, respectively, operate in aprotic solvents.

4.
J Periodontol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031888

RESUMEN

BACKGROUND: Bacterial-induced inflammation instigates the destruction of hard and soft tissues surrounding teeth in periodontitis. In severe cases, the increased number and activity of osteoclasts induces the resorption of alveolar bones, ultimately leading to tooth loss. Because of their diverse chemical structures and bioactivities, natural compounds are often suggested to treat a wide variety of diseases, including inflammatory disorders. METHODS: In the present study, we demonstrated an inhibitory effect of gossypetin, a hexahydroxy flavone, on osteoclast differentiation and bone resorption using in vitro culture of osteoclasts from mouse bone marrow macrophage (BMM) precursors and in vivo model of ligature-induced periodontitis in mice. RESULTS: Gossypetin significantly reduced the differentiation of osteoclasts from mouse BMM precursors in the presence of the receptor activator of nuclear factor κB ligand (RANKL). In vitro, gossypetin inhibited critical signaling events downstream of RANKL including the auto-amplification of nuclear factor of activated T-cells, cytoplasmic 1, Ca2+ oscillations, and the generation of reactive oxygen species. In a mouse ligature-induced periodontitis model, the administration of gossypetin significantly reduced osteoclastogenesis and alveolar bone resorption. Furthermore, gossypetin prevented the ligature-induced increase in macrophages and T cells and reduced the production of tumor necrosis factor-α and interleukin-6. CONCLUSION: Taken together, these results show anti-osteoclastogenic and anti-inflammatory effects of gossypetin, suggesting the potential use of this natural compound in periodontitis.

5.
JBMR Plus ; 8(2): ziad014, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38505527

RESUMEN

Bone homeostasis is maintained by tightly coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In the present report, the role of Mer tyrosine kinase (MerTK) in bone metabolism was investigated. The expression of MerTK decreased upon BMP2 stimulation of osteoblast precursors. The femurs of Mertk-deficient mice showed significantly increased bone volume with concomitant increase of bone formation and reduction in bone resorption. These bone phenotypes were attributed to the increased osteoblast differentiation and mineralization accounted by the enhanced ß-catenin and Smad signaling in the absence of MerTK in osteoblast precursors. Although the Mertk-deficient bone marrow macrophages were predisposed to enhanced osteoclast differentiation via augmented Ca2+-NFATc1 signaling, the dramatic increase of Tnfsf11b/Tnfsf11 (Opg/Rankl) ratio in Mertk knockout bones and osteoblast precursors corroborated the reduction of osteoclastogenesis in Mertk deficiency. In ligature-induced periodontitis and ovariectomy models, the bone resorption was significantly attenuated in Mertk-deficient mice compared with wild-type control. Taken together, these data indicate novel role of MerTK in bone metabolism and suggest a potential strategy targeting MerTK in treating bone-lytic diseases including periodontitis and osteoporosis.

6.
J Bone Miner Res ; 37(3): 505-514, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34812548

RESUMEN

The differentiation and activity of bone-resorbing osteoclasts are tightly regulated to maintain the homeostasis of healthy bones. In this study, the role of protein tyrosine phosphatase 1B (PTP1B) during osteoclastogenesis was studied in myeloid-specific Ptpn1-deficient (conditional knockout [cKO]) mice. The mRNA and protein expression of PTP1B increased during the formation of mature osteoclasts from mouse bone macrophages on stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). The Ptpn1 cKO mice exhibited increased femoral trabecular bone volume with a decreased number and activity of osteoclasts compared with control mice. The in vitro culture of osteoclast precursors corroborated the inhibition of osteoclastogenesis in cKO cells compared with control, with concomitantly decreased RANKL-dependent proliferation, lower osteoclast marker gene expression, reduced nuclear expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), diminished intracellular Ca2+ oscillations, and increased phosphorylation of proto-oncogene tyrosine-protein kinase Src on inhibitory tyrosine residue. In a ligature-induced periodontitis model, Ptpn1 cKO mice exhibited attenuated osteoclastogenesis and alveolar bone loss following the induction of inflammation. The Ptpn1-deficient mice were similarly protected from ovariectomy-induced bone loss compared with control mice. These results provide a novel regulatory role of PTP1B in osteoclastogenesis and suggest a potential as a therapeutic target for bone-lytic diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Resorción Ósea , Osteogénesis , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Animales , Resorción Ósea/metabolismo , Diferenciación Celular , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Ovariectomía , Monoéster Fosfórico Hidrolasas/metabolismo , Ligando RANK/metabolismo , Tirosina/metabolismo
7.
Biomolecules ; 10(2)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079203

RESUMEN

Adpsin is an adipokine that stimulates insulin secretion from ß-cells and improves glucose tolerance. Its expression has been found to be markedly reduced in obese animals. However, it remains unclear what factors lead to downregulation of adipsin in the context of obesity. Endoplasmic reticulum (ER) stress response is activated in various tissues under obesity-related conditions and can induce transcriptional reprogramming. Therefore, we aimed to investigate the relationship between adipsin expression and ER stress in adipose tissues during obesity. We observed that obese mice exhibited decreased levels of adipsin in adipose tissues and serum and increased ER stress markers in adipose tissues compared to lean mice. We also found that ER stress suppressed adipsin expression via adipocytes-intrinsic mechanisms. Moreover, the ER stress-mediated downregulation of adipsin was at least partially attributed to decreased expression of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor in the regulation of adipocyte function. Finally, treatment with chemical chaperones recovered the ER stress-mediated downregulation of adipsin and PPARγ in vivo and in vitro. Our findings suggest that activated ER stress in adipose tissues is an important cause of the suppression of adipsin expression in the context of obesity.


Asunto(s)
Adipocitos/metabolismo , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Células 3T3-L1 , Adipocitos/citología , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Factor D del Complemento/genética , Factor D del Complemento/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
8.
Free Radic Biol Med ; 160: 575-595, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32896600

RESUMEN

Regulating amyloid beta (Aß) pathology and neuroinflammatory responses holds promise for the treatment of Alzheimer's disease (AD) and other neurodegenerative and/or neuroinflammation-related diseases. In this study, the effects of KVN93, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), on cognitive function and Aß plaque levels and the underlying mechanism of action were evaluated in 5x FAD mice (a mouse model of AD). KVN93 treatment significantly improved long-term memory by enhancing dendritic synaptic function. In addition, KVN93 significantly reduced Aß plaque levels in 5x FAD mice by regulating levels of the Aß degradation enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE). Moreover, Aß-induced microglial and astrocyte activation were significantly suppressed in the KVN-treated 5xFAD mice. KVN93 altered neuroinflammation induced by LPS in microglial cells but not primary astrocytes by regulating TLR4/AKT/STAT3 signaling, and in wild-type mice injected with LPS, KVN93 treatment reduced microglial and astrocyte activation. Overall, these results suggest that the novel DYRK1A inhibitor KVN93 is a potential therapeutic drug for regulating cognitive/synaptic function, Aß plaque load, and neuroinflammatory responses in the brain.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Cognición , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía , Placa Amiloide/tratamiento farmacológico , Quinasas DyrK
9.
Front Mol Neurosci ; 12: 192, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474828

RESUMEN

Recently, we reported that ALWPs, which we developed by combining Liuwei Dihuang pills (LWPs) with antler, regulate the LPS-induced neuroinflammatory response and rescue LPS-induced short- and long-term memory impairment in wild-type (WT) mice. In the present study, we examined the effects of ALWPs on Alzheimer's disease (AD) pathology and cognitive function in WT mice as well as 5x FAD mice (a mouse model of AD). We found that administration of ALWPs significantly reduced amyloid plaque levels in 5x FAD mice and significantly decreased amyloid ß (Aß) levels in amyloid precursor protein (APP)-overexpressing H4 cells. In addition, ALWPs administration significantly suppressed tau hyperphosphorylation in 5x FAD mice. Oral administration of ALWPs significantly improved long-term memory in scopolamine (SCO)-injected WT mice and 5x FAD mice by altering dendritic spine density. Importantly, ALWPs promoted spinogenesis in primary hippocampal neurons and WT mice and modulated the dendritic spine number in an extracellular signal-regulated kinase (ERK)-dependent manner. Taken together, our results suggest that ALWPs are a candidate therapeutic drug for AD that can modulate amyloid plaque load, tau phosphorylation, and synaptic/cognitive function.

10.
ACS Nano ; 13(8): 8766-8783, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31310506

RESUMEN

Complex amyloid aggregation of amyloid-ß (1-40) (Aß1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aß1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aß1-40 induced by low solvent polarity accelerated cytotoxic Aß1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of ß-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aß1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/ultraestructura , Fragmentos de Péptidos/ultraestructura , Agregación Patológica de Proteínas/genética , Conformación Proteica en Hélice alfa/genética , Enfermedad de Alzheimer/patología , Amiloide/química , Amiloide/genética , Péptidos beta-Amiloides/química , Humanos , Fragmentos de Péptidos/química , Conformación Proteica en Lámina beta/genética , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Solubilidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda