Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 604(7907): 714-722, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444284

RESUMEN

Dementia in Alzheimer's disease progresses alongside neurodegeneration1-4, but the specific events that cause neuronal dysfunction and death remain poorly understood. During normal ageing, neurons progressively accumulate somatic mutations5 at rates similar to those of dividing cells6,7 which suggests that genetic factors, environmental exposures or disease states might influence this accumulation5. Here we analysed single-cell whole-genome sequencing data from 319 neurons from the prefrontal cortex and hippocampus of individuals with Alzheimer's disease and neurotypical control individuals. We found that somatic DNA alterations increase in individuals with Alzheimer's disease, with distinct molecular patterns. Normal neurons accumulate mutations primarily in an age-related pattern (signature A), which closely resembles 'clock-like' mutational signatures that have been previously described in healthy and cancerous cells6-10. In neurons affected by Alzheimer's disease, additional DNA alterations are driven by distinct processes (signature C) that highlight C>A and other specific nucleotide changes. These changes potentially implicate nucleotide oxidation4,11, which we show is increased in Alzheimer's-disease-affected neurons in situ. Expressed genes exhibit signature-specific damage, and mutations show a transcriptional strand bias, which suggests that transcription-coupled nucleotide excision repair has a role in the generation of mutations. The alterations in Alzheimer's disease affect coding exons and are predicted to create dysfunctional genetic knockout cells and proteostatic stress. Our results suggest that known pathogenic mechanisms in Alzheimer's disease may lead to genomic damage to neurons that can progressively impair function. The aberrant accumulation of DNA alterations in neurodegeneration provides insight into the cascade of molecular and cellular events that occurs in the development of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Envejecimiento , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , ADN , Exones , Genómica , Hipocampo/citología , Humanos , Tasa de Mutación , Neuronas/patología , Nucleótidos , Corteza Prefrontal/citología , Secuenciación Completa del Genoma
2.
Nature ; 556(7701): 370-375, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643508

RESUMEN

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) 1 , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans2-4, but have little effect on the brains of mice5-9; this probably reflects evolutionarily divergent functions of ASPM10,11. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity12-14 than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients3,4, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates12-16. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.


Asunto(s)
Evolución Biológica , Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Hurones , Eliminación de Gen , Microcefalia/genética , Microcefalia/patología , Proteínas del Tejido Nervioso/deficiencia , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/deficiencia , Proteínas de Unión a Calmodulina/metabolismo , Centrosoma/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Hurones/anatomía & histología , Hurones/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Mutación de Línea Germinal , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Tamaño de los Órganos , Transcripción Genética
3.
Genome Res ; 27(8): 1323-1335, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28630177

RESUMEN

While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the "low hanging fruit" of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN , Microcefalia/genética , Microcefalia/patología , Mutación , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Transcriptoma , Animales , Mapeo Cromosómico , Femenino , Ligamiento Genético , Inestabilidad Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Noqueados , Microcefalia/etiología , Osteocondrodisplasias/etiología , Linaje , Embarazo , Empalme del ARN , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
4.
Transl Psychiatry ; 8(1): 77, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29643329

RESUMEN

The development of three-dimensional culture methods has allowed for the study of developing cortical morphology in human cells. This provides a new tool to study the neurodevelopmental consequences of disease-associated mutations. Here, we study the effects of isogenic DISC1 mutation in cerebral organoids. DISC1 has been implicated in psychiatric disease based on genetic studies, including its interruption by a balanced translocation that increases the risk of major mental illness. Isogenic wild-type and DISC1-disrupted human-induced pluripotent stem cells were used to generate cerebral organoids, which were then examined for morphology and gene expression. We show that DISC1-mutant cerebral organoids display disorganized structural morphology and impaired proliferation, which is phenocopied by WNT agonism and rescued by WNT antagonism. Furthermore, there are many shared changes in gene expression with DISC1 disruption and WNT agonism, including in neural progenitor and cell fate markers, regulators of neuronal migration, and interneuron markers. These shared gene expression changes suggest mechanisms for the observed morphologic dysregulation with DISC1 disruption and points to new avenues for future studies. The shared changes in three-dimensional cerebral organoid morphology and gene expression with DISC1 interruption and WNT agonism further strengthens the link between DISC1 mutation, abnormalities in WNT signaling, and neuropsychiatric disease.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vía de Señalización Wnt , Apoptosis , Proliferación Celular , Corteza Cerebral/patología , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Proteínas del Tejido Nervioso/genética , Organoides/metabolismo , Organoides/patología , Técnicas de Cultivo de Tejidos
5.
Science ; 359(6375): 555-559, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217584

RESUMEN

It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.


Asunto(s)
Envejecimiento/genética , Reparación del ADN/genética , Tasa de Mutación , Enfermedades Neurodegenerativas/genética , Neurogénesis/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Síndrome de Cockayne/genética , Análisis Mutacional de ADN , Femenino , Hipocampo/citología , Hipocampo/embriología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Neuronas , Corteza Prefrontal/citología , Corteza Prefrontal/embriología , Análisis de la Célula Individual , Secuenciación Completa del Genoma , Xerodermia Pigmentosa/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda